




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
青海省大通回族土族自治縣第一中學新高考仿真卷數學試題注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規定位置.3.請認真核對監考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.如圖,四面體中,面和面都是等腰直角三角形,,,且二面角的大小為,若四面體的頂點都在球上,則球的表面積為()A. B. C. D.2.正項等差數列的前和為,已知,則=()A.35 B.36 C.45 D.543.已知定義在上的函數的周期為4,當時,,則()A. B. C. D.4.存在點在橢圓上,且點M在第一象限,使得過點M且與橢圓在此點的切線垂直的直線經過點,則橢圓離心率的取值范圍是()A. B. C. D.5.雙曲線C:(,)的離心率是3,焦點到漸近線的距離為,則雙曲線C的焦距為()A.3 B. C.6 D.6.斜率為1的直線l與橢圓相交于A、B兩點,則的最大值為A.2 B. C. D.7.設全集,集合,,則()A. B. C. D.8.若(是虛數單位),則的值為()A.3 B.5 C. D.9.若a>b>0,0<c<1,則A.logac<logbc B.logca<logcb C.ac<bc D.ca>cb10.已知向量滿足,且與的夾角為,則()A. B. C. D.11.如圖,正方體的底面與正四面體的底面在同一平面上,且,若正方體的六個面所在的平面與直線相交的平面個數分別記為,則下列結論正確的是()A. B. C. D.12.已知雙曲線C的兩條漸近線的夾角為60°,則雙曲線C的方程不可能為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在數列中,,則數列的通項公式_____.14.已知數列的前項和且,設,則的值等于_______________.15.己知雙曲線的左、右焦點分別為,直線是雙曲線過第一、三象限的漸近線,記直線的傾斜角為,直線,,垂足為,若在雙曲線上,則雙曲線的離心率為_______16.已知橢圓的左右焦點分別為,過且斜率為的直線交橢圓于,若三角形的面積等于,則該橢圓的離心率為________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在平面直角坐標系xOy中,以O為極點,x軸的正半軸為極軸建立極坐標系,已知曲線C:ρcos2θ=4asinθ?(a>0),直線l的參數方程為x=-2+22t,y=-1+(I)寫出曲線C的直角坐標方程和直線l的普通方程(不要求具體過程);(II)設P(-2,-1),若|PM|,|MN|,|PN|成等比數列,求a的值.18.(12分)設橢圓:的左、右焦點分別為,,下頂點為,橢圓的離心率是,的面積是.(1)求橢圓的標準方程.(2)直線與橢圓交于,兩點(異于點),若直線與直線的斜率之和為1,證明:直線恒過定點,并求出該定點的坐標.19.(12分)已知動圓E與圓外切,并與直線相切,記動圓圓心E的軌跡為曲線C.(1)求曲線C的方程;(2)過點的直線l交曲線C于A,B兩點,若曲線C上存在點P使得,求直線l的斜率k的取值范圍.20.(12分)已知函數.(1)討論的單調性并指出相應單調區間;(2)若,設是函數的兩個極值點,若,且恒成立,求實數k的取值范圍.21.(12分)在中,角、、的對邊分別為、、,且.(1)若,,求的值;(2)若,求的值.22.(10分)如圖,已知拋物線:與圓:()相交于,,,四個點,(1)求的取值范圍;(2)設四邊形的面積為,當最大時,求直線與直線的交點的坐標.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】
分別取、的中點、,連接、、,利用二面角的定義轉化二面角的平面角為,然后分別過點作平面的垂線與過點作平面的垂線交于點,在中計算出,再利用勾股定理計算出,即可得出球的半徑,最后利用球體的表面積公式可得出答案.【詳解】如下圖所示,分別取、的中點、,連接、、,由于是以為直角等腰直角三角形,為的中點,,,且、分別為、的中點,所以,,所以,,所以二面角的平面角為,,則,且,所以,,,是以為直角的等腰直角三角形,所以,的外心為點,同理可知,的外心為點,分別過點作平面的垂線與過點作平面的垂線交于點,則點在平面內,如下圖所示,由圖形可知,,在中,,,所以,,所以,球的半徑為,因此,球的表面積為.故選:B.【點睛】本題考查球體的表面積,考查二面角的定義,解決本題的關鍵在于找出球心的位置,同時考查了計算能力,屬于中等題.2、C【解析】
由等差數列通項公式得,求出,再利用等差數列前項和公式能求出.【詳解】正項等差數列的前項和,,,解得或(舍),,故選C.【點睛】本題主要考查等差數列的性質與求和公式,屬于中檔題.解等差數列問題要注意應用等差數列的性質()與前項和的關系.3、A【解析】
因為給出的解析式只適用于,所以利用周期性,將轉化為,再與一起代入解析式,利用對數恒等式和對數的運算性質,即可求得結果.【詳解】定義在上的函數的周期為4,當時,,,,.故選:A.【點睛】本題考查了利用函數的周期性求函數值,對數的運算性質,屬于中檔題.4、D【解析】
根據題意利用垂直直線斜率間的關系建立不等式再求解即可.【詳解】因為過點M橢圓的切線方程為,所以切線的斜率為,由,解得,即,所以,所以.故選:D【點睛】本題主要考查了建立不等式求解橢圓離心率的問題,屬于基礎題.5、A【解析】
根據焦點到漸近線的距離,可得,然后根據,可得結果.【詳解】由題可知:雙曲線的漸近線方程為取右焦點,一條漸近線則點到的距離為,由所以,則又所以所以焦距為:故選:A【點睛】本題考查雙曲線漸近線方程,以及之間的關系,識記常用的結論:焦點到漸近線的距離為,屬基礎題.6、C【解析】
設出直線的方程,代入橢圓方程中消去y,根據判別式大于0求得t的范圍,進而利用弦長公式求得|AB|的表達式,利用t的范圍求得|AB|的最大值.【詳解】解:設直線l的方程為y=x+t,代入y2=1,消去y得x2+2tx+t2﹣1=0,由題意得△=(2t)2﹣1(t2﹣1)>0,即t2<1.弦長|AB|=4.故選:C.【點睛】本題主要考查了橢圓的應用,直線與橢圓的關系.常需要把直線與橢圓方程聯立,利用韋達定理,判別式找到解決問題的突破口.7、B【解析】
可解出集合,然后進行補集、交集的運算即可.【詳解】,,則,因此,.故選:B.【點睛】本題考查補集和交集的運算,涉及一元二次不等式的求解,考查運算求解能力,屬于基礎題.8、D【解析】
直接利用復數的模的求法的運算法則求解即可.【詳解】(是虛數單位)可得解得本題正確選項:【點睛】本題考查復數的模的運算法則的應用,復數的模的求法,考查計算能力.9、B【解析】試題分析:對于選項A,,,,而,所以,但不能確定的正負,所以它們的大小不能確定;對于選項B,,,兩邊同乘以一個負數改變不等號方向,所以選項B正確;對于選項C,利用在第一象限內是增函數即可得到,所以C錯誤;對于選項D,利用在上為減函數易得,所以D錯誤.所以本題選B.【考點】指數函數與對數函數的性質【名師點睛】比較冪或對數值的大小,若冪的底數相同或對數的底數相同,通常利用指數函數或對數函數的單調性進行比較;若底數不同,可考慮利用中間量進行比較.10、A【解析】
根據向量的運算法則展開后利用數量積的性質即可.【詳解】.故選:A.【點睛】本題主要考查數量積的運算,屬于基礎題.11、A【解析】
根據題意,畫出幾何位置圖形,由圖形的位置關系分別求得的值,即可比較各選項.【詳解】如下圖所示,平面,從而平面,易知與正方體的其余四個面所在平面均相交,∴,∵平面,平面,且與正方體的其余四個面所在平面均相交,∴,∴結合四個選項可知,只有正確.故選:A.【點睛】本題考查了空間幾何體中直線與平面位置關系的判斷與綜合應用,對空間想象能力要求較高,屬于中檔題.12、C【解析】
判斷出已知條件中雙曲線的漸近線方程,求得四個選項中雙曲線的漸近線方程,由此確定選項.【詳解】兩條漸近線的夾角轉化為雙曲漸近線與軸的夾角時要分為兩種情況.依題意,雙曲漸近線與軸的夾角為30°或60°,雙曲線的漸近線方程為或.A選項漸近線為,B選項漸近線為,C選項漸近線為,D選項漸近線為.所以雙曲線的方程不可能為.故選:C【點睛】本小題主要考查雙曲線的漸近線方程,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
由題意可得,又,數列的奇數項為首項為1,公差為2的等差數列,對分奇數和偶數兩種情況,分別求出,從而得到數列的通項公式.【詳解】解:∵,∴①,②,①﹣②得:,又∵,∴數列的奇數項為首項為1,公差為2的等差數列,∴當為奇數時,,當為偶數時,則為奇數,∴,∴數列的通項公式,故答案為:.【點睛】本題考查求數列的通項公式,解題關鍵是由已知遞推關系得出,從而確定數列的奇數項成等差數列,求出通項公式后再由已知求出偶數項,要注意結果是分段函數形式.14、7【解析】
根據題意,當時,,可得,進而得數列為等比數列,再計算可得,進而可得結論.【詳解】由題意,當時,,又,解得,當時,由,所以,,即,故數列是以為首項,為公比的等比數列,故,又,,所以,.故答案為:.【點睛】本題考查了數列遞推關系、函數求值,考查了推理能力與計算能力,計算得是解決本題的關鍵,屬于中檔題.15、【解析】
由,則,所以點,因為,可得,點坐標化簡為,代入雙曲線的方程求解.【詳解】設,則,即,解得,則,所以,即,代入雙曲線的方程可得,所以所以解得.故答案為:【點睛】本題主要考查了直線與雙曲線的位置關系,及三角恒等變換,還考查了運算求解的能力和數形結合的思想,屬于中檔題.16、【解析】
由題得直線的方程為,代入橢圓方程得:,設點,則有,由,且解出,進而求解出離心率.【詳解】由題知,直線的方程為,代入消得:,設點,則有,,而,又,解得:,所以離心率.故答案為:【點睛】本題主要考查了直線與橢圓的位置關系,三角形面積計算與離心率的求解,考查了學生的運算求解能力三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(I)x2=4aya>0,x-y+1=0【解析】
(I)利用所給的極坐標方程和參數方程,直接整理化簡得到直角坐標方程和普通方程;(II)聯立直線的參數方程和C的直角坐標方程,結合韋達定理以及等比數列的性質即可求得答案.【詳解】(I)曲線C:ρcos2可得ρ2cos2直線l的參數方程為x=-2+22t,x-y=-1,得x-y+1=0;(II)將x=-2+22t,y=-1+2t韋達定理:t1由題意得MN2=PM可得(t即32(a+1)解得a=【點睛】本題考查了極坐標方程、參數方程與直角坐標和普通方程的互化,以及參數方程的綜合知識,結合等比數列,熟練運用知識,屬于較易題.18、(1);(2)證明見解析,.【解析】
(1)根據離心率和的面積是得到方程組,計算得到答案.(2)先排除斜率為0時的情況,設,,聯立方程組利用韋達定理得到,,根據化簡得到,代入直線方程得到答案.【詳解】(1)由題意可得,解得,,則橢圓的標準方程是.(2)當直線的斜率為0時,直線與直線關于軸對稱,則直線與直線的斜率之和為零,與題設條件矛盾,故直線的斜率不為0.設,,直線的方程為聯立,整理得則,.因為直線與直線的斜率之和為1,所以,所以,將,代入上式,整理得.所以,即,則直線的方程為.故直線恒過定點.【點睛】本題考查了橢圓的標準方程,直線過定點問題,計算出是解題的關鍵,意在考查學生的計算能力和轉化能力.19、(1);(2).【解析】
(1)根據拋物線的定義,結合已知條件,即可容易求得結果;(2)設出直線的方程,聯立拋物線方程,根據直線與拋物線相交則,結合由得到的斜率關系,即可求得斜率的范圍.【詳解】(1)因為動圓與圓外切,并與直線相切,所以點到點的距離比點到直線的距離大.因為圓的半徑為,所以點到點的距離等于點到直線的距離,所以圓心的軌跡為拋物線,且焦點坐標為.所以曲線的方程.(2)設,,由得,由得且.,,同理由,得,即,所以,由,得且,又且,所以的取值范圍為.【點睛】本題考查由拋物線定義求拋物線方程,涉及直線與拋物線相交結合垂直關系求斜率的范圍,屬綜合中檔題.20、(1)答案見解析(2)【解析】
(1)先對函數進行求導得,對分成和兩種情況討論,從而得到相應的單調區間;(2)對函數求導得,從而有,,,三個方程中利用得到.將不等式的左邊轉化成關于的函數,再構造新函數利用導數研究函數的最小值,從而得到的取值范圍.【詳解】解:(1)由,,則,當時,則,故在上單調遞減;當時,令,所以在上單調遞減,在上單調遞增.綜上所述:當時,在上單調遞減;當時,在上單調遞減,在上單調遞增.(2)∵,,由得,∴,,∴∵∴解得.∴.設,則,∴在上單調遞減;當時,.∴,即所求的取值范圍為.【點睛】本題考查利用導數研究函數的單調性、最值,考查分類討論思想和數形結合思想,求解雙元問題的常用思路是:通過換元或消元,將雙元問題轉化為單元問題,然后利用導數研究單變量函數的性質.21、(1);(2).【解析】
(1)利用余弦定理得出關于的二次方程,結合,可求出的值;(2)利用兩角和的余弦公式以及誘導公式可求出的值,利用同角三角函數的基本關系求出的值,然后利用二倍角的正切公式可求出的值.【詳解】(1)在中,由余弦定理得,,即,解得或(舍),所以;(2)由及得,,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025-2030年熱風除皺機市場前景分析及投資策略與風險管理研究報告
- 2025-2030年水產飼料行業市場深度分析及發展趨勢與投資戰略研究報告
- 2025-2030年新生兒監護儀行業市場現狀供需分析及投資評估規劃分析研究報告
- 2025-2030年折疊自行車行業市場現狀供需分析及投資評估規劃分析研究報告
- 市政工程考試時效管理策略與試題及答案
- 特色資源的市政工程試題及答案
- 2025-2030年廢舊手機行業市場深度調研及前景趨勢與投資戰略研究報告
- 2025-2030年巖棉產業市場深度調研及發展趨勢與投資研究報告
- 2025-2030年室內兒童樂園行業市場發展分析與發展前景及投資戰略研究報告
- 2025-2030年安全監視設備產業市場發展分析及前景趨勢與投資管理研究報告
- 機械制圖習題集第九章《裝配圖》匯編
- 天師大和韓國世翰大學研究生入學英語試題
- 土建生態環保和綠色施工環境管理培訓ppt
- GB/T 27930-2023非車載傳導式充電機與電動汽車之間的數字通信協議
- 電力工程項目管理手冊
- 2023年高考真題-政治(江蘇卷)含解析
- 醫院化驗單模板 血常規
- 領導干部個人事項少報漏報說明
- 提高住院病歷完成及時性持續改進(PDCA)
- 華為公司質量管理手冊
- 自主擇業協議書
評論
0/150
提交評論