




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
南寧市第四十七中學新高考數學必刷試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若與互為共軛復數,則()A.0 B.3 C.-1 D.42.已知是定義在上的奇函數,且當時,.若,則的解集是()A. B.C. D.3.已知為兩條不重合直線,為兩個不重合平面,下列條件中,的充分條件是()A.∥ B.∥C.∥∥ D.4.某部隊在一次軍演中要先后執行六項不同的任務,要求是:任務A必須排在前三項執行,且執行任務A之后需立即執行任務E,任務B、任務C不能相鄰,則不同的執行方案共有()A.36種 B.44種 C.48種 D.54種5.我國古代數學名著《數書九章》中有“天池盆測雨”題:在下雨時,用一個圓臺形的天池盆接雨水.天池盆盆口直徑為二尺八寸,盆底直徑為一尺二寸,盆深一尺八寸.若盆中積水深九寸,則平地降雨量是(注:①平地降雨量等于盆中積水體積除以盆口面積;②一尺等于十寸;③臺體的體積公式).A.2寸 B.3寸 C.4寸 D.5寸6.已知曲線且過定點,若且,則的最小值為().A. B.9 C.5 D.7.已知函數在區間上恰有四個不同的零點,則實數的取值范圍是()A. B. C. D.8.若集合,,則下列結論正確的是()A. B. C. D.9.已知定義在上的函數,若函數為偶函數,且對任意,,都有,若,則實數的取值范圍是()A. B. C. D.10.從某市的中學生中隨機調查了部分男生,獲得了他們的身高數據,整理得到如下頻率分布直方圖:根據頻率分布直方圖,可知這部分男生的身高的中位數的估計值為A. B.C. D.11.過點的直線與曲線交于兩點,若,則直線的斜率為()A. B.C.或 D.或12.若集合,,則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知點是雙曲線漸近線上的一點,則雙曲線的離心率為_______14.設函數滿足,且當時,又函數,則函數在上的零點個數為___________.15.已知實數、滿足,且可行域表示的區域為三角形,則實數的取值范圍為______,若目標函數的最小值為-1,則實數等于______.16.若函數為自然對數的底數)在和兩處取得極值,且,則實數的取值范圍是______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數.(1)若關于的不等式的整數解有且僅有一個值,當時,求不等式的解集;(2)已知,若,使得成立,求實數的取值范圍.18.(12分)在四棱錐的底面中,,,平面,是的中點,且(Ⅰ)求證:平面;(Ⅱ)求二面角的余弦值;(Ⅲ)線段上是否存在點,使得,若存在指出點的位置,若不存在請說明理由.19.(12分)一種游戲的規則為拋擲一枚硬幣,每次正面向上得2分,反面向上得1分.(1)設拋擲4次的得分為,求變量的分布列和數學期望.(2)當游戲得分為時,游戲停止,記得分的概率和為.①求;②當時,記,證明:數列為常數列,數列為等比數列.20.(12分)已知橢圓:的離心率為,右焦點為拋物線的焦點.(1)求橢圓的標準方程;(2)為坐標原點,過作兩條射線,分別交橢圓于、兩點,若、斜率之積為,求證:的面積為定值.21.(12分)為了響應國家號召,促進垃圾分類,某校組織了高三年級學生參與了“垃圾分類,從我做起”的知識問卷作答隨機抽出男女各20名同學的問卷進行打分,作出如圖所示的莖葉圖,成績大于70分的為“合格”.(Ⅰ)由以上數據繪制成2×2聯表,是否有95%以上的把握認為“性別”與“問卷結果”有關?男女總計合格不合格總計(Ⅱ)從上述樣本中,成績在60分以下(不含60分)的男女學生問卷中任意選2個,記來自男生的個數為,求的分布列及數學期望.附:0.1000.0500.0100.0012.7063.8416.63510.82822.(10分)如圖,在四棱錐中,底面是矩形,是的中點,平面,且,.()求與平面所成角的正弦.()求二面角的余弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】
計算,由共軛復數的概念解得即可.【詳解】,又由共軛復數概念得:,.故選:C【點睛】本題主要考查了復數的運算,共軛復數的概念.2、B【解析】
利用函數奇偶性可求得在時的解析式和,進而構造出不等式求得結果.【詳解】為定義在上的奇函數,.當時,,,為奇函數,,由得:或;綜上所述:若,則的解集為.故選:.【點睛】本題考查函數奇偶性的應用,涉及到利用函數奇偶性求解對稱區間的解析式;易錯點是忽略奇函數在處有意義時,的情況.3、D【解析】
根據面面垂直的判定定理,對選項中的命題進行分析、判斷正誤即可.【詳解】對于A,當,,時,則平面與平面可能相交,,,故不能作為的充分條件,故A錯誤;對于B,當,,時,則,故不能作為的充分條件,故B錯誤;對于C,當,,時,則平面與平面相交,,,故不能作為的充分條件,故C錯誤;對于D,當,,,則一定能得到,故D正確.故選:D.【點睛】本題考查了面面垂直的判斷問題,屬于基礎題.4、B【解析】
分三種情況,任務A排在第一位時,E排在第二位;任務A排在第二位時,E排在第三位;任務A排在第三位時,E排在第四位,結合任務B和C不能相鄰,分別求出三種情況的排列方法,即可得到答案.【詳解】六項不同的任務分別為A、B、C、D、E、F,如果任務A排在第一位時,E排在第二位,剩下四個位置,先排好D、F,再在D、F之間的3個空位中插入B、C,此時共有排列方法:;如果任務A排在第二位時,E排在第三位,則B,C可能分別在A、E的兩側,排列方法有,可能都在A、E的右側,排列方法有;如果任務A排在第三位時,E排在第四位,則B,C分別在A、E的兩側;所以不同的執行方案共有種.【點睛】本題考查了排列組合問題,考查了學生的邏輯推理能力,屬于中檔題.5、B【解析】試題分析:根據題意可得平地降雨量,故選B.考點:1.實際應用問題;2.圓臺的體積.6、A【解析】
根據指數型函數所過的定點,確定,再根據條件,利用基本不等式求的最小值.【詳解】定點為,,當且僅當時等號成立,即時取得最小值.故選:A【點睛】本題考查指數型函數的性質,以及基本不等式求最值,意在考查轉化與變形,基本計算能力,屬于基礎題型.7、A【解析】
函數的零點就是方程的解,設,方程可化為,即或,求出的導數,利用導數得出函數的單調性和最值,由此可根據方程解的個數得出的范圍.【詳解】由題意得有四個大于的不等實根,記,則上述方程轉化為,即,所以或.因為,當時,,單調遞減;當時,,單調遞增;所以在處取得最小值,最小值為.因為,所以有兩個符合條件的實數解,故在區間上恰有四個不相等的零點,需且.故選:A.【點睛】本題考查復合函數的零點.考查轉化與化歸思想,函數零點轉化為方程的解,方程的解再轉化為研究函數的性質,本題考查了學生分析問題解決問題的能力.8、D【解析】
由題意,分析即得解【詳解】由題意,故,故選:D【點睛】本題考查了元素和集合,集合和集合之間的關系,考查了學生概念理解,數學運算能力,屬于基礎題.9、A【解析】
根據題意,分析可得函數的圖象關于對稱且在上為減函數,則不等式等價于,解得的取值范圍,即可得答案.【詳解】解:因為函數為偶函數,所以函數的圖象關于對稱,因為對任意,,都有,所以函數在上為減函數,則,解得:.即實數的取值范圍是.故選:A.【點睛】本題考查函數的對稱性與單調性的綜合應用,涉及不等式的解法,屬于綜合題.10、C【解析】
由題可得,解得,則,,所以這部分男生的身高的中位數的估計值為,故選C.11、A【解析】
利用切割線定理求得,利用勾股定理求得圓心到弦的距離,從而求得,結合,求得直線的傾斜角為,進而求得的斜率.【詳解】曲線為圓的上半部分,圓心為,半徑為.設與曲線相切于點,則所以到弦的距離為,,所以,由于,所以直線的傾斜角為,斜率為.故選:A【點睛】本小題主要考查直線和圓的位置關系,考查數形結合的數學思想方法,屬于中檔題.12、A【解析】
用轉化的思想求出中不等式的解集,再利用并集的定義求解即可.【詳解】解:由集合,解得,則故選:.【點睛】本題考查了并集及其運算,分式不等式的解法,熟練掌握并集的定義是解本題的關鍵.屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
先表示出漸近線,再代入點,求出,則離心率易求.【詳解】解:的漸近線是因為在漸近線上,所以,故答案為:【點睛】考查雙曲線的離心率的求法,是基礎題.14、1【解析】
判斷函數為偶函數,周期為2,判斷為偶函數,計算,,畫出函數圖像,根據圖像到答案.【詳解】知,函數為偶函數,,函數關于對稱。,故函數為周期為2的周期函數,且。為偶函數,,,當時,,,函數先增后減。當時,,,函數先增后減。在同一坐標系下作出兩函數在上的圖像,發現在內圖像共有1個公共點,則函數在上的零點個數為1.故答案為:.【點睛】本題考查了函數零點問題,確定函數的奇偶性,對稱性,周期性,畫出函數圖像是解題的關鍵.15、【解析】
作出不等式組對應的平面區域,利用目標函數的幾何意義,結合目標函數的最小值,利用數形結合即可得到結論.【詳解】作出可行域如圖,則要為三角形需滿足在直線下方,即,;目標函數可視為,則為斜率為1的直線縱截距的相反數,該直線截距最大在過點時,此時,直線:,與:的交點為,該點也在直線:上,故,故答案為:;.【點睛】本題主要考查線性規劃的應用,利用目標函數的幾何意義,結合數形結合的數學思想是解決此類問題的基本方法,屬于基礎題.16、【解析】
先將函數在和兩處取得極值,轉化為方程有兩不等實根,且,再令,將問題轉化為直線與曲線有兩交點,且橫坐標滿足,用導數方法研究單調性,作出簡圖,求出時,的值,進而可得出結果.【詳解】因為,所以,又函數在和兩處取得極值,所以是方程的兩不等實根,且,即有兩不等實根,且,令,則直線與曲線有兩交點,且交點橫坐標滿足,又,由得,所以,當時,,即函數在上單調遞增;當,時,,即函數在和上單調遞減;當時,由得,此時,因此,由得.故答案為【點睛】本題主要考查導數的應用,已知函數極值點間的關系求參數的問題,通常需要將函數極值點,轉化為導函數對應方程的根,再轉化為直線與曲線交點的問題來處理,屬于常考題型.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】
(1)求解不等式,結合整數解有且僅有一個值,可得,分類討論,求解不等式,即得解;(2)轉化,使得成立為,利用不等式性質,求解二次函數最小值,代入解不等式即可.【詳解】(1)不等式,即,所以,由,解得.因為,所以,當時,,不等式等價于或或即或或,故,故不等式的解集為.(2)因為,由,可得,又由,使得成立,則,解得或.故實數的取值范圍為.【點睛】本題考查了絕對值不等式的求解和恒成立問題,考查了學生轉化劃歸,分類討論,數學運算的能力,屬于中檔題.18、(Ⅰ)詳見解析;(Ⅱ);(Ⅲ)存在,點為線段的中點.【解析】
(Ⅰ)連結,,,則四邊形為平行四邊形,得到證明.(Ⅱ)建立如圖所示坐標系,平面法向量為,平面的法向量,計算夾角得到答案.(Ⅲ)設,計算,,根據垂直關系得到答案.【詳解】(Ⅰ)連結,,,則四邊形為平行四邊形.平面.(Ⅱ)平面,四邊形為正方形.所以,,兩兩垂直,建立如圖所示坐標系,則,,,,設平面法向量為,則,連結,可得,又所以,平面,平面的法向量,設二面角的平面角為,則.(Ⅲ)線段上存在點使得,設,,,,所以點為線段的中點.【點睛】本題考查了線面平行,二面角,根據垂直關系確定位置,意在考查學生的計算能力和空間想象能力.19、(1)分布列見解析,數學期望為6;(2)①;②證明見解析【解析】
(1)變量的所有可能取值為4,5,6,7,8,分別求出對應的概率,進而可求出變量的分布列和數學期望;(2)①得2分只需要拋擲一次正面向上或兩次反面向上,分別求出兩種情況的概率,進而可求得;②得分分兩種情況,第一種為得分后拋擲一次正面向上,第二種為得分后拋擲一次反面向上,可知當且時,,結合,可推出,從而可證明數列為常數列;結合,可推出,進而可證明數列為等比數列.【詳解】(1)變量的所有可能取值為4,5,6,7,8.每次拋擲一次硬幣,正面向上的概率為,反面向上的概率也為,則,.所以變量的分布列為:45678故變量的數學期望為.(2)①得2分只需要拋擲一次正面向上或兩次反面向上,概率的和為.②得分分兩種情況,第一種為得分后拋擲一次正面向上,第二種為得分后拋擲一次反面向上,故且時,有,則時,,所以,故數列為常數列;又,,所以數列為等比數列.【點睛】本題考查離散型隨機變量的分布列及數學期望,考查常數列及等比數列的證明,考查學生的計算求解能力與推理論證能力,屬于中檔題.20、(1);(2)見解析【解析】
(1)由條件可得,再根據離心率可求得,則可得橢圓方程;(2)當與軸垂直時,設直線的方程為:,與橢圓聯立求得的坐標,通過、斜率之積為列方程可得的值,進而可得的面積;當與軸不垂直時,設,,的方程為,與橢圓方程聯立,利用韋達定理和、斜率之積為可得,再利用弦長公式求出,以及到的距離,通過三角形的面積公式求解.【詳解】(1)拋物線的焦點為,,,,,,橢圓方程為;(2)(ⅰ)當與軸垂直時,設直線的方程為:代入得:,,,解得:,;(ⅱ)當與軸不垂直時,設,,的方程為由,由①,,,即整理得:代入①得:到的距離綜上
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年煙臺市萊州市教育和體育系統招聘真題
- 風險管理框架應用試題及答案
- 幼兒情感教育活動計劃
- 法學概論學習方法的多樣性與靈活性試題及答案
- 網絡管理員考試背景知識分析試題及答案
- 手術室安全管理與風險控制計劃
- 2024年上海奉賢區社區工作者招聘筆試真題
- 軟考2025網絡管理員全重要試題及答案
- 2024年昆明冶金高等專科學校招聘筆試真題
- 軟件設計師考試多樣化策略試題及答案解析
- Introduction-to-MedDRA-M教學講解課件
- 有源醫療器械產品有效期驗證報告2019
- 訴訟材料接收表
- 機動車駕駛員體檢表
- 新技術新項目匯報課件
- 各級醫療機構醫院發熱門診設置管理規范
- 思想道德與法治全冊教案
- 水電站擴建工程砂石加工系統施工組織設計
- 蒙牛冰淇淋經銷商管理制度
- ASTM B465-20 銅鐵合金板、薄板、帶材和軋制棒材的標準規范
- 外協出入庫流程
評論
0/150
提交評論