




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
廣東省三校全國高三模擬考(二)全國I卷新高考數學試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若干年前,某教師剛退休的月退休金為6000元,月退休金各種用途占比統計圖如下面的條形圖.該教師退休后加強了體育鍛煉,目前月退休金的各種用途占比統計圖如下面的折線圖.已知目前的月就醫費比剛退休時少100元,則目前該教師的月退休金為().A.6500元 B.7000元 C.7500元 D.8000元2.設函數,的定義域都為,且是奇函數,是偶函數,則下列結論正確的是()A.是偶函數 B.是奇函數C.是奇函數 D.是奇函數3.如圖,已知直線與拋物線相交于A,B兩點,且A、B兩點在拋物線準線上的投影分別是M,N,若,則的值是()A. B. C. D.4.在聲學中,聲強級(單位:)由公式給出,其中為聲強(單位:).,,那么()A. B. C. D.5.設,滿足約束條件,若的最大值為,則的展開式中項的系數為()A.60 B.80 C.90 D.1206.已知集合,,則()A. B.C.或 D.7.已知函數,集合,,則()A. B.C. D.8.如圖,四邊形為正方形,延長至,使得,點在線段上運動.設,則的取值范圍是()A. B. C. D.9.記等差數列的公差為,前項和為.若,,則()A. B. C. D.10.復數的共軛復數記作,已知復數對應復平面上的點,復數:滿足.則等于()A. B. C. D.11.若復數(為虛數單位),則的共軛復數的模為()A. B.4 C.2 D.12.函數的定義域為()A.或 B.或C. D.二、填空題:本題共4小題,每小題5分,共20分。13.如圖,在直四棱柱中,底面是平行四邊形,點是棱的中點,點是棱靠近的三等分點,且三棱錐的體積為2,則四棱柱的體積為______.14.已知向量與的夾角為,||=||=1,且⊥(λ),則實數_____.15.公比為正數的等比數列的前項和為,若,,則的值為__________.16.已知實數,且由的最大值是_________三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)某調查機構為了了解某產品年產量x(噸)對價格y(千克/噸)和利潤z的影響,對近五年該產品的年產量和價格統計如下表:x12345y17.016.515.513.812.2(1)求y關于x的線性回歸方程;(2)若每噸該產品的成本為12千元,假設該產品可全部賣出,預測當年產量為多少時,年利潤w取到最大值?參考公式:18.(12分)已知曲線的參數方程為為參數),以直角坐標系原點為極點,以軸正半軸為極軸并取相同的單位長度建立極坐標系.(1)求曲線的極坐標方程,并說明其表示什么軌跡;(2)若直線的極坐標方程為,求曲線上的點到直線的最大距離.19.(12分)(1)求曲線和曲線圍成圖形的面積;(2)化簡求值:.20.(12分)已知數列和滿足:.(1)求證:數列為等比數列;(2)求數列的前項和.21.(12分)在△ABC中,角A,B,C的對邊分別為a,b,c,且b(a2+c2﹣b2)=a2ccosC+ac2cosA.(1)求角B的大小;(2)若△ABC外接圓的半徑為,求△ABC面積的最大值.22.(10分)某中學準備組建“文科”興趣特長社團,由課外活動小組對高一學生文科、理科進行了問卷調查,問卷共100道題,每題1分,總分100分,該課外活動小組隨機抽取了200名學生的問卷成績(單位:分)進行統計,將數據按照,,,,分成5組,繪制的頻率分布直方圖如圖所示,若將不低于60分的稱為“文科方向”學生,低于60分的稱為“理科方向”學生.理科方向文科方向總計男110女50總計(1)根據已知條件完成下面列聯表,并據此判斷是否有99%的把握認為是否為“文科方向”與性別有關?(2)將頻率視為概率,現在從該校高一學生中用隨機抽樣的方法每次抽取1人,共抽取3次,記被抽取的3人中“文科方向”的人數為,若每次抽取的結果是相互獨立的,求的分布列、期望和方差.參考公式:,其中.參考臨界值:0.100.050.0250.0100.0050.0012.7063.8415.0246.6357.87910.828
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】
設目前該教師的退休金為x元,利用條形圖和折線圖列出方程,求出結果即可.【詳解】設目前該教師的退休金為x元,則由題意得:6000×15%﹣x×10%=1.解得x=2.故選D.【點睛】本題考查由條形圖和折線圖等基礎知識解決實際問題,屬于基礎題.2、C【解析】
根據函數奇偶性的性質即可得到結論.【詳解】解:是奇函數,是偶函數,,,,故函數是奇函數,故錯誤,為偶函數,故錯誤,是奇函數,故正確.為偶函數,故錯誤,故選:.【點睛】本題主要考查函數奇偶性的判斷,根據函數奇偶性的定義是解決本題的關鍵.3、C【解析】
直線恒過定點,由此推導出,由此能求出點的坐標,從而能求出的值.【詳解】設拋物線的準線為,直線恒過定點,如圖過A、B分別作于M,于N,由,則,點B為AP的中點、連接OB,則,∴,點B的橫坐標為,∴點B的坐標為,把代入直線,解得,故選:C.【點睛】本題考查直線與圓錐曲線中參數的求法,考查拋物線的性質,是中檔題,解題時要注意等價轉化思想的合理運用,屬于中檔題.4、D【解析】
由得,分別算出和的值,從而得到的值.【詳解】∵,∴,∴,當時,,∴,當時,,∴,∴,故選:D.【點睛】本小題主要考查對數運算,屬于基礎題.5、B【解析】
畫出可行域和目標函數,根據平移得到,再利用二項式定理計算得到答案.【詳解】如圖所示:畫出可行域和目標函數,,即,故表示直線與截距的倍,根據圖像知:當時,的最大值為,故.展開式的通項為:,取得到項的系數為:.故選:.【點睛】本題考查了線性規劃求最值,二項式定理,意在考查學生的計算能力和綜合應用能力.6、D【解析】
首先求出集合,再根據補集的定義計算可得;【詳解】解:∵,解得∴,∴.故選:D【點睛】本題考查補集的概念及運算,一元二次不等式的解法,屬于基礎題.7、C【解析】
分別求解不等式得到集合,再利用集合的交集定義求解即可.【詳解】,,∴.故選C.【點睛】本題主要考查了集合的基本運算,難度容易.8、C【解析】
以為坐標原點,以分別為x軸,y軸建立直角坐標系,利用向量的坐標運算計算即可解決.【詳解】以為坐標原點建立如圖所示的直角坐標系,不妨設正方形的邊長為1,則,,設,則,所以,且,故.故選:C.【點睛】本題考查利用向量的坐標運算求變量的取值范圍,考查學生的基本計算能力,本題的關鍵是建立適當的直角坐標系,是一道基礎題.9、C【解析】
由,和,可求得,從而求得和,再驗證選項.【詳解】因為,,所以解得,所以,所以,,,故選:C.【點睛】本題考查等差數列的通項公式、前項和公式,還考查運算求解能力,屬于中檔題.10、A【解析】
根據復數的幾何意義得出復數,進而得出,由得出可計算出,由此可計算出.【詳解】由于復數對應復平面上的點,,則,,,因此,.故選:A.【點睛】本題考查復數模的計算,考查了復數的坐標表示、共軛復數以及復數的除法,考查計算能力,屬于基礎題.11、D【解析】
由復數的綜合運算求出,再寫出其共軛復數,然后由模的定義計算模.【詳解】,.故選:D.【點睛】本題考查復數的運算,考查共軛復數與模的定義,屬于基礎題.12、A【解析】
根據偶次根式被開方數非負可得出關于的不等式,即可解得函數的定義域.【詳解】由題意可得,解得或.因此,函數的定義域為或.故選:A.【點睛】本題考查具體函數定義域的求解,考查計算能力,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、12【解析】
由題意,設底面平行四邊形的,且邊上的高為,直四棱柱的高為,分別表示出直四棱柱的體積和三棱錐的體積,即可求解。【詳解】由題意,設底面平行四邊形的,且邊上的高為,直四棱柱的高為,則直四棱柱的體積為,又由三棱錐的體積為,解得,即直四棱柱的體積為。【點睛】本題主要考查了棱柱與棱錐的體積的計算問題,其中解答中正確認識幾何體的結構特征,合理、恰當地表示直四棱柱三棱錐的體積是解答本題的關鍵,著重考查了推理與運算能力,以及空間想象能力,屬于中檔試題。14、1【解析】
根據條件即可得出,由即可得出,進行數量積的運算即可求出λ.【詳解】∵向量與的夾角為,||=||=1,且;∴;∴λ=1.故答案為:1.【點睛】考查向量數量積的運算及計算公式,以及向量垂直的充要條件.15、56【解析】
根據已知條件求等比數列的首項和公比,再代入等比數列的通項公式,即可得到答案.【詳解】,,.故答案為:.【點睛】本題考查等比數列的通項公式和前項和公式,考查函數與方程思想、轉化與化歸思想,考查邏輯推理能力、運算求解能力.16、【解析】
將其轉化為幾何意義,然后根據最值的條件求出最大值【詳解】由化簡得,又實數,圖形為圓,如圖:,可得,則由幾何意義得,則,為求最大值則當過點或點時取最小值,可得所以的最大值是【點睛】本題考查了二元最值問題,將其轉化為幾何意義,得到圓的方程及斜率問題,對要求的二元二次表達式進行化簡,然后求出最值問題,本題有一定難度。三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)當時,年利潤最大.【解析】
(1)方法一:令,先求得關于的回歸直線方程,由此求得關于的回歸直線方程.方法二:根據回歸直線方程計算公式,計算出回歸直線方程.方法一的好處在計算的數值較小.(2)求得w的表達式,根據二次函數的性質作出預測.【詳解】(1)方法一:取,則得與的數據關系如下123457.06.55.53.82.2,,,.,,關于的線性回歸方程是即,故關于的線性回歸方程是.方法二:因為,,,,,所以,故關于的線性回歸方程是,(2)年利潤,根據二次函數的性質可知:當時,年利潤最大.【點睛】本小題主要考查回歸直線方程的求法,考查利用回歸直線方程進行預測,考查運算求解能力,屬于中檔題.18、(1),表示圓心為,半徑為的圓;(2)【解析】
(1)根據參數得到直角坐標系方程,再轉化為極坐標方程得到答案.(2)直線方程為,計算圓心到直線的距離加上半徑得到答案.【詳解】(1),即,化簡得到:.即,表示圓心為,半徑為的圓.(2),即,圓心到直線的距離為.故曲線上的點到直線的最大距離為.【點睛】本題考查了參數方程,極坐標方程,直線和圓的距離的最值,意在考查學生的計算能力和應用能力.19、(1)(2)【解析】
(1)求曲線和曲線圍成的圖形面積,首先求出兩曲線交點的橫坐標0、1,然后求在區間上的定積分.(2)首先利用二倍角公式及兩角差的余弦公式計算出,然后再整體代入可得;【詳解】解:(1)聯立解得,,所以曲線和曲線圍成的圖形面積.(2)∴【點睛】本題考查定積分求曲邊形的面積以及三角恒等變換的應用,屬于中檔題.20、(1)見解析(2)【解析】
(1)根據題目所給遞推關系式得到,由此證得數列為等比數列.(2)由(1)求得數列的通項公式,判斷出,由此利用裂項求和法求得數列的前項和.【詳解】(1)所以數列是以3為首項,以3為公比的等比數列.(2)由(1)知,∴為常數列,且,∴,∴∴【點睛】本小題主要考查根據遞推關系式證明等比數列,考查裂項求和法,屬于中檔題.21、(1)B(2)【解析】
(1)由已知結合余弦定理,正弦定理及和兩角和的正弦公式進行化簡可求cosB,進而可求B;(2)由已知結合正弦定理,余弦定理及基本不等式即可求解ac的范圍,然后結合三角形的面積公式即可求解.【詳解】(1)因為b(a2+c2﹣b2)=ca2cosC+ac2cosA,∴,即2bcosB=acosC+ccosA由正弦定理可得,2sinBcosB=sinAcosC+sinCcosA=sin(A+C)=sinB,因為,所以,所以B;(2)由正弦定理可得,b=2RsinB2,由余弦定理可得,b2=a2+c2﹣2accosB,即a2+c2﹣ac=4,因為a2+c2≥2ac,所以4=a2+c2﹣ac≥ac,當且僅當a=c時取等號,即ac的最大值4,所以△ABC面積S即面積的最大值.【點睛】本題綜合考查了正弦定理,余弦定理及三角形的面積公式在求解三角形中的應用,屬于中檔題.22、(1)列聯表見解析,有;(2)分布列見解析,,.【解析】
(1)由頻率分布直方圖可得分數在、之間的學生人數,可得列聯表.根據列聯表計算的值,結合參考臨界值表可得到結論
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 仙居吳悅烤肉店活動方案
- 浙江省溫州市甌海區第二實驗中學2023-2024學年四年級下學期數學期末考試試卷(含答案)
- 代駕公司推廣策劃方案
- 以純公司會展策劃方案
- 儀征活動策劃方案
- 任務意識教育活動方案
- 北京市順義區2023-2024學年五年級下學期數學期末試卷(含答案)
- 仿真拼圖活動方案
- 企業五一活動策劃方案
- 企業黨員宣講活動方案
- 2025年少先隊知識考試測試題庫
- 內蒙古自治區科技成果交易平臺
- 2025年廠區物料運輸環保責任合同范本4篇
- 2025高考英語作文8類熱點話題及范文
- 流體力學與液壓傳動知到智慧樹章節測試課后答案2024年秋陜西理工大學
- 舞蹈生個人生涯規劃
- 【MOOC】大數據與法律檢索-湖南師范大學 中國大學慕課MOOC答案
- 【MOOC】材料力學-西北工業大學 中國大學慕課MOOC答案
- 財產共有權轉讓協議書
- 形象設計與化妝技巧學習通超星期末考試答案章節答案2024年
- DB11∕T 2115-2023 機械式停車設備使用管理和維護保養安全技術規范
評論
0/150
提交評論