榆林市重點中學2025屆高一下數學期末達標檢測模擬試題含解析_第1頁
榆林市重點中學2025屆高一下數學期末達標檢測模擬試題含解析_第2頁
榆林市重點中學2025屆高一下數學期末達標檢測模擬試題含解析_第3頁
榆林市重點中學2025屆高一下數學期末達標檢測模擬試題含解析_第4頁
榆林市重點中學2025屆高一下數學期末達標檢測模擬試題含解析_第5頁
已閱讀5頁,還剩8頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

榆林市重點中學2025屆高一下數學期末達標檢測模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.在數列an中,a1=1,an=2A.211 B.22.平面平面,直線,,那么直線與直線的位置關系一定是()A.平行 B.異面 C.垂直 D.不相交3.從裝有兩個紅球和兩個黑球的口袋里任取兩個球,那么對立的兩個事件是()A.“至少有一個黑球”與“都是黑球”B.“至少有一個黑球”與“至少有一個紅球”C.“恰好有一個黑球”與“恰好有兩個黑球”D.“至少有一個黑球”與“都是紅球”4.函數f(x)=log3(2﹣x)的定義域是()A.[2,+∞) B.(2,+∞) C.(﹣∞,2) D.(﹣∞,2]5.sincos+cos20°sin40°的值等于A. B. C. D.6.設,過定點的動直線和過定點的動直線交于點,則的最大值是()A. B. C. D.7.方程的解集為()A.B.C.D.8.《萊因德紙草書》是世界上最古老的數學著作之一,書中有一道這樣的題目:把100個面包分給五個人,使每個人所得成等差數列,最大的三份之和的是最小的兩份之和,則最小的一份的量是()A. B. C. D.9.下列說法正確的是()A.小于的角是銳角 B.鈍角是第二象限的角C.第二象限的角大于第一象限的角 D.若角與角的終邊相同,則10.已知平面向量滿足:,,,若,則的值為()A. B. C.1 D.-1二、填空題:本大題共6小題,每小題5分,共30分。11.直線的傾斜角為__________.12.若首項為,公比為()的等比數列滿足,則的取值范圍是________.13.已知不等式的解集為,則________.14.若,則_________.15.如圖是甲、乙兩人在10天中每天加工零件個數的莖葉圖,若這10天甲加工零件個數的中位數為,乙加工零件個數的平均數為,則______.16.設α為第二象限角,若sinα=35三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.在中,角的對邊分別為,已知.(1)求角;(2)若的面積為,求在上的投影.18.已知,函數.(1)當時,解不等式;(2)若對,不等式恒成立,求a的取值范圍.19.在平面直角坐標系中,已知射線與射線,過點作直線l分別交兩射線于點A、B(不同于原點O).(1)當取得最小值時,直線l的方程;(2)求的最小值;20.設等差數列的前n項和為,,.(1)求;(2)設,求數列的前n項和.21.如圖,四棱錐中,平面,底面是平行四邊形,若,.(Ⅰ)求證:平面平面;(Ⅱ)求棱與平面所成角的正弦值.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】

將a1=1代入遞推公式可得a2,同理可得出a【詳解】∵a1=1,an=22an-1-1(【點睛】本題用將a12、D【解析】

利用空間中線線、線面、面面的位置關系得出直線與直線沒有公共點.【詳解】由題平面平面,直線,則直線與直線的位置關系平行或異面,即兩直線沒有公共點,不相交.故選D.【點睛】本題考查空間中兩條直線的位置關系,屬于簡單題.3、D【解析】

寫出所有等可能事件,求出事件“至少有一個黑球”的概率為,事件“都是紅球”的概率為,兩事件的概率和為,從而得到兩事件對立.【詳解】記兩個黑球為,兩個紅球為,則任取兩球的所有等可能結果為:,記事件A為“至少有一個黑球”,事件為:“都是紅球”,則,因為,所以事件與事件互為對立事件.【點睛】本題考查古典概型和對立事件的判斷,利用兩事件的概率和為1是判斷對立事件的常用方法.4、C【解析】試題分析:利用對數函數的性質求解.解:函數f(x)=log3(1﹣x)的定義域滿足:1﹣x>0,解得x<1.∴函數f(x)=log3(1﹣x)的定義域是(﹣∞,1).故選C.考點:對數函數的定義域.5、B【解析】由題可得,.故選B.6、A【解析】

由題意知兩直線互相垂直,根據直線分別求出定點與定點,再利用基本不等式,即可得出答案。【詳解】直線過定點,直線過定點,又因直線與直線互相垂直,即即,當且僅當時取等號故選A【點睛】本題考查直線位置關系,考查基本不等式,屬于中檔題。7、C【解析】

利用反三角函數的定義以及正切函數的周期為,即可得到原方程的解.【詳解】由,根據正切函數圖像以及周期可知:,故選:C【點睛】本題考查了反三角函數的定義以及正切函數的性質,需熟記正切函數的圖像與性質,屬于基礎題.8、D【解析】

由題意可得中間部分的為20個面包,設最小的一份為,公差為,可得到和的方程,即可求解.【詳解】由題意可得中間的那份為20個面包,設最小的一份為,公差為,由題意可得,解得,故選D.【點睛】本題主要考查了等差數列的通項公式及其應用,其中根據題意設最小的一份為,公差為,列出關于和的方程是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.9、B【解析】

可通過舉例的方式驗證選項的對錯.【詳解】A:負角不是銳角,比如“”的角,故錯誤;B:鈍角范圍是“”,是第二象限的角,故正確;C:第二象限角取“”,第一象限角取“”,故錯誤;D:當角與角的終邊相同,則.故選B.【點睛】本題考查任意角的概念,難度較易.10、C【解析】

將代入,化簡得到答案.【詳解】故答案選C【點睛】本題考查了向量的運算,意在考查學生的計算能力.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】試題分析:由直線方程可知斜率考點:直線傾斜角與斜率12、【解析】

由題意可得且,即且,,化簡可得由不等式的性質可得的取值范圍.【詳解】解:,故有且,化簡可得且即故答案為:【點睛】本題考查數列極限以及不等式的性質,屬于中檔題.13、-7【解析】

結合一元二次不等式和一元二次方程的性質,列出方程組,求得的值,即可得到答案.【詳解】由不等式的解集為,可得,解得,所以.故答案為:.【點睛】本題主要考查了一元二次不等式的解法,以及一元二次方程的性質,其中解答中熟記一元二次不等式的解法是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.14、【解析】

利用誘導公式求解即可【詳解】,故答案為:【點睛】本題考查誘導公式,是基礎題15、44.5【解析】

由莖葉圖直接可以求出甲的中位數和乙的平均數,求和即可.【詳解】由莖葉圖知,甲加工零件個數的中位數為,乙加工零件個數的平均數為,則.【點睛】本題主要考查利用莖葉圖求中位數和平均數.16、-【解析】

先求出cosα,再利用二倍角公式求sin2α【詳解】因為α為第二象限角,若sinα=所以cosα=所以sin2α故答案為-【點睛】本題主要考查同角三角函數的平方關系,考查二倍角的正弦公式,意在考查學生對這些知識的理解掌握水平,屬于基礎題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1);(2)當時,在上的投影為;當時,在上的投影為.【解析】

(1)由已知條件,結合正弦定理,求得,即可求得C的大小;(2)由已知條件,結合三角形的面積公式及余弦定理,求得的值,再由向量的數量積的運算,即可求解.【詳解】(1)因為,由正弦定理知,即,又,所以,所以,在中,,所以,又,所以;(2)在中,由余弦定理得,由,即,因此,所以,解得或,當時,在上的投影為;當時,在上的投影為.【點睛】本題主要考查了正弦定理、余弦定理和三角形的面積公式的應用,其中在解有關三角形的題目時,要抓住題設條件和利用某個定理的信息,合理應用正弦定理和余弦定理求解是解答的關鍵,著重考查了運算與求解能力,屬于基礎題.18、(1)或;(2)或.【解析】

(1)代入,把項都移到左邊,合并同類項再因式分解,即可得到本題答案;(2)等價于,考慮的圖象不在圖象的上方,利用數形結合的方法,即可得到本題答案.【詳解】(1)當時,由得,即,解得,或,所以,所求不等式的解集為或;(2)等價于,所以當時,的圖象在圖象的下方,所以或所以,,或.【點睛】本題主要考查一元二次不等式以及利用數形結合的方法解決不等式的恒成立問題.19、(1);(2)6.【解析】

(1)設,,利用三點共線可得的關系,計算出后由基本不等式求得最小值.從而得直線方程;(2)由(1)中所設坐標計算出,利用基本不等式由(1)中所得關系可得的最小值,從而得的最小值.【詳解】(1)設,,因為A,B,M三點共線,所以與共線,因為,,所以,得,即,,等號當且僅當時取得,此時直線l的方程為.(2)因為由,所以,當且僅當時取得等號,所以當時,取最小值6.【點睛】本題考查直線方程的應用,考查三點共線的向量表示,考查用基本不等式求最值.用基本不等式求最值時要根據目標函數的特征采取不同的方法,如(1)中用“1”的代換配湊出基本不等式的條件求得最值,(2)直接由已知應用基本不等式求最值.20、(1)(2)【解析】

(1)在等差數列中根據,,可求得其首項與公差,從而可求得;(2)可證明為等比數列,利用等比數列的求和公式計算即可.【詳解】(1);(2),所以.【點睛】本題考查等比數列的前項和,著重考查等差數列的性質與通項公式及等比數列的前項和公式,屬于基礎題.21、(Ⅰ)見證明;(Ⅱ)【解析】

(Ⅰ)先證明平面,再證明平面平面.(Ⅱ)以為原點,所在直線為軸,所在直線

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論