2023-2024學年江蘇省泰州市泰興一中高一數學第二學期期末監測試題含解析_第1頁
2023-2024學年江蘇省泰州市泰興一中高一數學第二學期期末監測試題含解析_第2頁
2023-2024學年江蘇省泰州市泰興一中高一數學第二學期期末監測試題含解析_第3頁
2023-2024學年江蘇省泰州市泰興一中高一數學第二學期期末監測試題含解析_第4頁
2023-2024學年江蘇省泰州市泰興一中高一數學第二學期期末監測試題含解析_第5頁
已閱讀5頁,還剩11頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023-2024學年江蘇省泰州市泰興一中高一數學第二學期期末監測試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知等比數列的首項,公比,則()A. B. C. D.2.在中,,點P是直線BN上一點,若,則實數m的值是()A.2 B. C. D.3.《九章算術》中,將四個面都為直角三角形的三棱錐稱之為鱉臑,若三棱錐為鱉臑,平面,三棱錐的四個頂點都在球的球面上,則球的表面積為()A. B. C. D.4.如圖,在三棱柱中,側棱垂直于底面,底面是邊長為2的正三角形,側棱長為3,則與平面所成的角為()A. B. C. D.5.若直線xa+yb=1(a>0,b>0)A.3 B.4 C.3+22 D.6.已知圓的圓心與點關于直線對稱,直線與圓相交于,兩點,且,則圓的半徑長為()A. B. C.3 D.7.設為所在平面內一點,若,則下列關系中正確的是()A. B.C. D.8.若實數,滿足約束條件,則的最大值為()A.-3 B.1 C.9 D.109.下列函數中,在區間上單調遞增的是()A. B. C. D.10.已知函數的最大值是2,則的值為()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.在等差數列中,若,則的前13項之和等于______.12.若復數滿足(為虛數單位),則__________.13.設為等差數列,若,則_____.14.已知x,y滿足,則z=2x+y的最大值為_____.15.如圖,在直四棱柱中,,,,分別為的中點,平面平面.給出以下幾個說法:①;②直線與的夾角為;③與平面所成的角為;④平面內存在直線與平行.其中正確命題的序號是__________.16.弧度制是數學上一種度量角的單位制,數學家歐拉在他的著作《無窮小分析概論》中提出把圓的半徑作為弧長的度量單位.已知一個扇形的弧長等于其半徑長,則該扇形圓心角的弧度數是__________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.在中,內角的對邊分別為,且.(1)求角;(2)若,求的值.18.某企業為了解下屬某部門對本企業職工的服務情況,隨機訪問50名職工,根據這50名職工對該部門的評分,繪制頻率分布直方圖(如圖所示),其中樣本數據分組區間為(1)求頻率分布直方圖中的值;(2)估計該企業的職工對該部門評分不低于80的概率;(3)從評分在的受訪職工中,隨機抽取2人,求此2人評分都在的概率.19.數列的前n項和滿足.(1)求證:數列是等比數列;(2)若數列為等差數列,且,求數列的前n項.20.已知直線恒過定點,圓經過點和定點,且圓心在直線上.(1)求圓的方程;(2)已知點為圓直徑的一個端點,若另一端點為點,問軸上是否存在一點,使得為直角三角形,若存在,求出的值;若不存在,說明理由.21.在“新零售”模式的背景下,某大型零售公司推廣線下分店,計劃在S市的A區開設分店,為了確定在該區開設分店的個數,該公司對該市已開設分店的其他區的數據作了初步處理后得到下列表格.記x表示在各區開設分店的個數,y表示這個x個分店的年收入之和.(1)該公司已經過初步判斷,可用線性回歸模型擬合y與x的關系,求y關于x的線性回歸方程(2)假設該公司在A區獲得的總年利潤z(單位:百萬元)與x,y之間的關系為,請結合(1)中的線性回歸方程,估算該公司應在A區開設多少個分店時,才能使A區平均每個分店的年利潤最大?(參考公式:,其中,)

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】

由等比數列的通項公式可得出.【詳解】解:由已知得,故選:B.【點睛】本題考查等比數列的通項公式的應用,是基礎題.2、B【解析】

根據向量的加減運算法則,通過,把用和表示出來,即可得到的值.【詳解】在中,,點是直線上一點,所以,又三點共線,所以,即.故選:B.【點睛】本題考查實數值的求法,解題時要認真審題,注意平面向量加法法則的合理運用,屬于基礎題.3、C【解析】由題意,PA⊥面ABC,則為直角三角形,PA=3,AB=4,所以PB=5,又△ABC是直角三角形,所以∠ABC=90°,AB=4,AC=5所以BC=3,因為為直角三角形,經分析只能,故,三棱錐的外接球的圓心為PC的中點,所以則球的表面積為.故選C.4、A【解析】

取的中點,連接、,作,垂足為點,證明平面,于是得出直線與平面所成的角為,然后利用銳角三角函數可求出.【詳解】如下圖所示,取的中點,連接、,作,垂足為點,是邊長為的等邊三角形,點為的中點,則,且,在三棱柱中,平面,平面,,,平面,平面,,,,平面,所以,直線與平面所成的角為,易知,在中,,,,,,即直線與平面所成的角為,故選A.【點睛】本題考查直線與平面所成角的計算,求解時遵循“一作、二證、三計算”的原則,一作的是過點作面的垂線,有時也可以通過等體積法計算出點到平面的距離,利用該距離與線段長度的比值作為直線與平面所成角的正弦值,考查計算能力與推理能力,屬于中等題.5、C【解析】

將1,2代入直線方程得到1a+2【詳解】將1,2代入直線方程得到1a+b=(a+b)(當a=2故答案選C【點睛】本題考查了直線方程,均值不等式,1的代換是解題的關鍵.6、A【解析】

根據題干畫出簡圖,在直角中,通過弦心距和半徑關系通過勾股定理求解即可。【詳解】圓的圓心與點關于直線對稱,所以,,設圓的半徑為,如下圖,圓心到直線的距離為:,,【點睛】直線和圓相交問題一般兩種方法:第一,通過弦心距d和半徑r的關系,通過勾股定理求解即可。第二,直線方程和圓的方程聯立,則。兩種思路,此題屬于中檔題型。7、A【解析】

∵∴?=3(?);∴=?.故選A.8、C【解析】

畫出可行域,向上平移基準直線到可行域邊界的位置,由此求得目標函數的最大值.【詳解】畫出可行域如下圖所示,由圖可知,向上平移基準直線到的位置,此時目標函數取得最大值為.故選C.【點睛】本小題主要考查利用線性規劃的知識求目標函數的最大值,考查數形結合的數學思想方法,屬于基礎題.9、A【解析】

判斷每個函數在上的單調性即可.【詳解】解:在上單調遞增,,和在上都是單調遞減.故選:A.【點睛】考查冪函數、指數函數、對數函數和反比例函數的單調性.10、B【解析】

根據誘導公式以及兩角和差的正余弦公式化簡,根據輔助角公式結合范圍求最值取得的條件即可得解.【詳解】由題函數,最大值是2,所以,平方處理得:,所以,,所以.故選:B【點睛】此題考查根據三角函數的最值求參數的取值,考查對三角恒等變換的綜合應用.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

根據題意,以及等差數列的性質,先得到,再由等差數列的求和公式,即可求出結果.【詳解】因為是等差數列,,所以,即,記前項和為,則.故答案為:【點睛】本題主要考查等差數列前項和的基本量的運算,熟記等差數列的性質以及求和公式即可,屬于基礎題型.12、【解析】分析:由復數的除法運算可得解.詳解:由,得.故答案為:.點睛:本題考查了復數的除法運算,屬于基礎題.13、【解析】

根據等差數列的性質:在等差數列中若則即可【詳解】故答案為:【點睛】本題主要考查的等差數列的性質:若則,這一性質是常考的知識點,屬于基礎題。14、1.【解析】

先根據約束條件畫出可行域,再利用幾何意義求最值,表示直線在軸上的截距,只需求出可行域直線在軸上的截距最大值即可.【詳解】解:,在坐標系中畫出圖象,三條線的交點分別是,,,在中滿足的最大值是點,代入得最大值等于1.故答案為:1.【點睛】本題是考查線性規劃問題,本題主要考查了簡單的線性規劃,以及利用幾何意義求最值,屬于基礎題.15、①③.【解析】

利用線面平行的性質定理可判斷①;利用平行線的性質可得直線與的夾角等于直線與所成的角,在中即可判斷②;與平面所成的角即為與平面所成的角可判斷③;根據直線與平面的位置關系可判斷④;【詳解】對于①,由,平面平面,則,又,所以,故①正確;對于②,連接,由,即直線與的夾角等于直線與所成的角,在中,,顯然直線與的夾角不為,故②不正確;對于③,與平面所成的角即為與平面所成的角,根據三棱柱為直棱柱可知為與平面所成的角,在梯形中,,,,可解得與平面所成的角為,故③正確;對于④,由于與平面相交,故平面內不存在與平行的直線.故答案為:①③【點睛】本題是一道立體幾何題目,考查了線面平行的性質定理,求線面角以及直線與平面之間的位置關系,屬于中檔題.16、1【解析】設扇形的弧長和半徑長為,由弧度制的定義可得,該扇形圓心角的弧度數是.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】

(1)根據與正弦定理化簡求解即可.(2)利用余弦定理以及(1)中所得的化簡求解即可.【詳解】解:(1),由正弦定理可得,即得,為三角形的內角,.(2),由余弦定理,即.解得.【點睛】本題主要考查了正余弦定理求解三角形的問題.需要根據題意用正弦定理邊化角以及選用合適的余弦定理等.屬于基礎題.18、(Ⅰ)0.006;(Ⅱ);(Ⅲ)【解析】

試題分析:(Ⅰ)在頻率分布直方圖中,由頻率總和即所有矩形面積之和為,可求;(Ⅱ)在頻率分布直方圖中先求出50名受訪職工評分不低于80的頻率為,由頻率與概率關系可得該部門評分不低于80的概率的估計值為;(Ⅲ)受訪職工評分在[50,60)的有3人,記為,受訪職工評分在[40,50)的有2人,記為,列出從這5人中選出兩人所有基本事件,即可求相應的概率.試題解析:(Ⅰ)因為,所以……..4分)(Ⅱ)由所給頻率分布直方圖知,50名受訪職工評分不低于80的頻率為,所以該企業職工對該部門評分不低于80的概率的估計值為………8分(Ⅲ)受訪職工評分在[50,60)的有:50×0.006×10=3(人),即為;受訪職工評分在[40,50)的有:50×0.004×40=2(人),即為.從這5名受訪職工中隨機抽取2人,所有可能的結果共有10種,它們是又因為所抽取2人的評分都在[40,50)的結果有1種,即,故所求的概率為考點:1.頻率分布直方圖;2.概率和頻率的關系;3.古典概型.【名師點睛】本題考查頻率分布直方圖、概率與頻率關系、古典概型,屬中檔題;利用頻率分布直方圖解題的時,注意其表達的意義,同時要理解頻率是概率的估計值這一基礎知識;在利用古典概型解題時,要注意列出所有的基本事件,千萬不可出現重、漏的情況.19、(1)見證明;(2)【解析】

(1)利用與的關系,即要注意對進行討論,再根據等比數列的定義,證明為常數;(2)利用錯位相減法對數列進行求和.【詳解】解(1)當時,,所以因為①,所以當時,②,①-②得,所以,所以,所以是首項為2,公比為2的等比數列.(2)由(1)知,,所以,因為,所以,設的公差為,則,所以所以,,所以,則,以上兩式相減得:,所以.【點睛】數列為等差數列,數列為等比數列,則數列的求和可采用錯位相減法求和,注意求和后要保證常數的準確性.20、(1);(2)見解析【解析】

(1)先求出直線過定點,設圓的一般方程,由題意列方程組,即可求圓的方程;(2)由(1)可知:求得直線的斜率,根據對稱性求得點坐標,由在圓外,所以點不能作為直角三角形的頂點,分類討論,即可求得的值.【詳解】(1)直線的方程可化為,由解得∴定點的坐標為.設圓的方程為,則圓心則依題意有解得∴圓的方程為;(2)由(1)知圓的標準方程為,∴圓心,半徑.∵是直徑的兩個端點,∴圓心是與的中點,∵軸上的點在圓外,∴是銳角,即不是直角頂點.若是的直角頂點,則,得;若是的直角頂點,則,得.綜上所述,在軸上存在一點,使為直角三角形,或.【點睛】本題考查圓的方程的求法,直線與圓的位置關系,考查分類討論思想,屬于中檔題.21、(1);(2)該公司應開設4個分店時,在該區的每個分店的平均利潤最大【解析】

(1)由表中數據先求得.再結合公式

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論