科大附中2024年高一下數學期末檢測試題含解析_第1頁
科大附中2024年高一下數學期末檢測試題含解析_第2頁
科大附中2024年高一下數學期末檢測試題含解析_第3頁
科大附中2024年高一下數學期末檢測試題含解析_第4頁
科大附中2024年高一下數學期末檢測試題含解析_第5頁
已閱讀5頁,還剩9頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

科大附中2024年高一下數學期末檢測試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知,則下列4個角中與角終邊相同的是()A. B. C. D.2.下列不等式正確的是()A.若,則 B.若,則C.若,則 D.若,則3.在正方體中,當點在線段(與,不重合)上運動時,總有:①;②平面平面;③平面;④.以上四個推斷中正確的是()A.①② B.①④ C.②④ D.③④4.已知直線l的方程為2x+3y=5,點P(a,b)在l上位于第一象限內的點,則的最小值為()A. B. C. D.5.下列函數中,最小正周期為的是()A. B. C. D.6.連續擲兩次骰子,分別得到的點數作為點的坐標,則點落在圓內的概率為A. B. C. D.7.設a>0,b>0,若是和的等比中項,則的最小值為()A.6 B. C.8 D.98.如圖,是圓的直徑,點是半圓弧的兩個三等分點,,,則()A. B. C. D.9.如圖是一三棱錐的三視圖,則此三棱錐內切球的體積為()A. B. C. D.10.過點P(﹣2,m)和Q(m,4)的直線斜率等于1,那么m的值等于()A.1或3 B.4 C.1 D.1或4二、填空題:本大題共6小題,每小題5分,共30分。11.在中,,,為角,,所對的邊,點為的重心,若,則的取值范圍為______.12.在數列中,,則______________.13.已知等比數列中,,,則該等比數列的公比的值是______.14.若向量,則與夾角的余弦值等于_____15.已知中,內角A,B,C的對邊分別為a,b,c,,,則的面積為______;16.某企業利用隨機數表對生產的800個零件進行抽樣測試,先將800個零件進行編號,編號分別為001,002,003,…,800從中抽取20個樣本,如下提供隨機數表的第行到第行:若從表中第6行第6列開始向右依次讀取個數據,則得到的第個樣本編號是_______.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知等差數列滿足,的前項和為.(1)求及;(2)記,求18.在中,已知角的對邊分別為,且.(1)求角的大小;(2)若,是的中點,且,求的面積.19.如圖,求陰影部分繞旋轉一周所形成的幾何體的表面積和體積.20.如圖,三棱錐中,,、、、分別是、、、的中點.(1)證明:平面;(2)證明:四邊形是菱形21.(1)求函數的單調遞增區間;(2)求函數,的單調遞減區間.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】

先寫出與角終邊相同的角的集合,再給k取值得解.【詳解】由題得與角終邊相同的集合為,當k=6時,.所以與角終邊相同的角為.故選C【點睛】本題主要考查終邊相同的角的求法,意在考查學生對該知識的理解掌握水平.2、B【解析】試題分析:A.若c<0,則不等號改變,若c=0,兩式相等,故A錯誤;B.若,則,故,故B正確;C.若b=0,則表達是不成立故C錯誤;D.c=0時錯誤.考點:不等式的性質.3、D【解析】

每個結論可以通過是否能證偽排除即可.【詳解】①因為,與相交,所以①錯.②很明顯不對,只有當E在中點時才滿足條件.③易得平面平面,而AE平面,所以平面;④因為平面,而AE平面,所以.故選D【點睛】此題考查空間圖像位置關系,一般通過特殊位置排除即可,屬于較易題目.4、C【解析】

由題意可得2a+3b=5,a,b>0,可得4a=10﹣6b,(3b<5),將所求式子化為b的關系式,由基本不等式可得所求最小值.【詳解】直線l的方程為2x+3y=5,點P(a,b)在l上位于第一象限內的點,可得2a+3b=5,a,b>0,可得4a=10﹣6b,(3b<5),則[(11﹣6b)+(9+6b)]()(7),當且僅當時,即b,a,上式取得最小值,故選:C.【點評】本題考查基本不等式的運用:求最值,考查變形能力和化簡運算能力,屬于中檔題.5、D【解析】

由函數的最小正周期為,逐個選項運算即可得解.【詳解】解:對于選項A,的最小正周期為,對于選項B,的最小正周期為,對于選項C,的最小正周期為,對于選項D,的最小正周期為,故選D.【點睛】本題考查了三角函數的最小正周期,屬基礎題.6、B【解析】

由拋擲兩枚骰子得到點的坐標共有36種,再利用列舉法求得點落在圓內所包含的基本事件的個數,利用古典概型的概率計算公式,即可求解.【詳解】由題意知,試驗發生包含的事件是連續擲兩次骰子分別得到的點數作為點P的坐標,共有種結果,而滿足條件的事件是點P落在圓內,列舉出落在圓內的情況:(1,1)(1,2)(1,3)(2,1)(2,2)(2,3)(3,1)(3,2),共有8種結果,根據古典概型概率公式,可得,故選B.【點睛】本題主要考查的是古典概型及其概率計算公式.,屬于基礎題.解題時要準確理解題意,先要判斷該概率模型是不是古典概型,正確找出隨機事件A包含的基本事件的個數和試驗中基本事件的總數,令古典概型及其概率的計算公式求解是解答的關鍵,著重考查了分析問題和解答問題的能力,屬于基礎題.7、D【解析】

試題分析:由題意a>0,b>0,且是和的等比中項,即,則,當且僅當時,即時取等號.考點:重要不等式,等比中項8、A【解析】

連接,證得,結合向量減法運算,求得.【詳解】連接,由于是半圓弧的兩個三等分點,所以,所以是等邊三角形,所以,所以四邊形是菱形,所以,所以.故選:A【點睛】本小題主要考查圓的幾何性質,考查向量相等的概念,考查向量減法的運算,屬于基礎題.9、D【解析】把此三棱錐嵌入長寬高分別為:的長方體中三棱錐即為所求的三棱錐其中,,,則,故可求得三棱錐各面面積分別為:,,,故表面積為三棱錐體積設內切球半徑為,則故三棱錐內切球體積故選10、C【解析】試題分析:利用直線的斜率公式求解.解:∵過點P(﹣2,m)和Q(m,4)的直線斜率等于1,∴k==1,解得m=1.故選C.考點:直線的斜率.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

在中,延長交于,由重心的性質,找到、和的關系,在和中利用余弦定理分別表示出和,求出,再利用余弦定理表示出,利用基本不等式和的范圍求解即可.【詳解】畫出,連接,并延長交于,因為是的重心,所以為中點,因為,所以,由重心的性質,,在中,由余弦定理得,,在中,由余弦定理得,因為,所以,又,所以,在中,由余弦定理和基本不等式,,又,所以,故.故答案為:【點睛】本題主要考查三角形重心的性質、余弦定理解三角形和基本不等式求最值,考查學生的分析轉化能力,屬于中檔題.12、20【解析】

首先根據已知得到:是等差數列,公差,再計算即可.【詳解】因為,所以數列是等差數列,公差..故答案為:【點睛】本題主要考查等差數列的判斷和等差數列項的求法,屬于簡單題.13、【解析】

根據等比通項公式即可求解【詳解】故答案為:【點睛】本題考查等比數列公比的求解,屬于基礎題14、【解析】

利用坐標運算求得;根據平面向量夾角公式可求得結果.【詳解】本題正確結果:【點睛】本題考查向量夾角的求解,明確向量夾角的余弦值等于向量的數量積除以兩向量模長的乘積.15、【解析】

先根據以及余弦定理計算出的值,再由面積公式即可求解出的面積.【詳解】因為,所以,所以,所以.故答案為:.【點睛】本題考查解三角形中利用余弦定理求角以及面積公式的運用,難度較易.三角形中,已知兩邊的乘積和第三邊所對的角即可利用面積公式求解出三角形面積.16、1【解析】

根據隨機數表法抽樣的定義進行抽取即可.【詳解】第6行第6列的數開始的數為808,不合適,436,789不合適,535,577,348,994不合適,837不合適,522,535重復不合適,1合適則滿足條件的6個編號為436,535,577,348,522,1,則第6個編號為1,故答案為1.【點睛】本題考查了簡單隨機抽樣中的隨機數表法,主要考查隨機抽樣的應用,根據定義選擇滿足條件的數據是解決本題的關鍵.本題屬于基礎題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1),(2)【解析】

(1)利用等差數列的通項公式,結合,可以得到兩個關于首項和公差的二元一次方程,解這個方程組即可求出首項和公差,最后利用等差數列的通項公式和前項和公式求出及;(2)利用裂項相消法可以求出.【詳解】解:(1)設等差數列的公差為d,(2)由(1)知:【點睛】本題考查了等差數列的通項公式和前項和公式,考查了裂項相消法求數列前項和,考查了數學運算能力.18、(1);(2).【解析】

(1)利用正弦定理和和差公式計算得到答案.(2)利用代入余弦定理公式得到,計算面積得到答案.【詳解】(1)∵是的內角,∴且又由正弦定理:和已知條件得:化簡得:,又∵∴;(2)∵,是的中點,且,,,∴由余弦定理得:,代入化簡得:又,即,可得:故所求的面積為.【點睛】本題考查了余弦定理,正弦定理,面積公式,意在考查學生的計算能力.19、,【解析】

由圖形知旋轉后的幾何體是一個圓臺,從上面挖去一個半球后剩余部分,根據圖形中的數據可求出其表面積和體積.【詳解】由題意知,所求旋轉體的表面積由三部分組成:圓臺下底面、側面和一個半球面,而半球面的表面積,圓臺的底面積,圓臺的側面積,所以所求幾何體的表面積;圓臺的體積,半球的體積,所以,旋轉體的體積為,故得解.【點睛】本題考查組合體的表面積、體積,還考查了空間想象能力,能想象出旋轉后的旋轉體的構成是本題的關鍵,屬于中檔題.20、(1)證明見解析;(2)證明見解析【解析】

(1)根據等腰三角形的性質,證得,由此證得平面.(2)先根據三角形中位線和平行公理,證得四邊形為平行四邊形,再根據已知,證得,由此證得四邊形是菱形.【詳解】解(1)因為,是的中點,所以因為,是的中點,所以又,平面,平面所以平面(2)因為、分別是、的中點所以且同理且所以且,即四邊形為平行四邊形又,所以所以四邊形是菱形.【點睛】本小題主要考

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論