




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2024福建省公務員考試數量關系專項練習題第一部分單選題(200題)1、某旅游部門規劃一條從甲景點到乙景點的旅游線路,經測試,旅游船從甲到乙順水勻速行駛需3小時;從乙返回甲逆水勻速行駛需4小時。假設水流速度恒定,甲乙之間的距離為y公里,旅游船在靜水中勻速行駛y公里需要x小時,則x滿足的方程為()。
A、1/3-1/x=1/x-1/4
B、1/3-1/x=1/4+1/x
C、1/(x+3)=1/4-1/x
D、1/(4-x)=1/x+1/3
【答案】:答案:A
解析:由題意可知,旅游船的靜水速度為y/x公里/時,順水速度為y/3公里/時,逆水速度為y/4公里/時。由水速=水速度-靜水速度=靜水速度-逆水速度,我們可得:y/3-y/x=y/x-y/4,消去y,得:1/3-1/x=1/x-1/4,故選A。考點點撥:解決流水問題的關鍵在于找出船速、水速、順水速度和逆水速度四個量,然后根據其之間的關系求出未知量。故選A。2、-3,-2,5,24,61,()
A、122
B、156
C、240
D、348
【答案】:答案:A
解析:相鄰兩項逐差:因此,未知項=61+61=122。故選A。3、甲、乙、丙三輛汽車分別從A地開往千里之外的B地。若乙比甲晚出發30分鐘,則乙出發后2小時追上甲;若丙比乙晚出發20分鐘,則丙出發后5小時追上乙。若甲出發10分鐘后乙出發,當乙追上甲時,丙才出發,則丙追上甲所需時間是()。
A、110分鐘
B、150分鐘
C、127分鐘
D、128分鐘
【答案】:答案:B
解析:設甲、乙、丙三輛汽車的速度分別為x、y、z。由于甲行駛30分鐘的路程,乙需要2小時才能追上,則30x=(y-x)×2×60,化簡得x∶y=4∶5。又因乙行駛20分鐘的路程,丙需要5小時才能追上,則20y=(z-y)×5×60,化簡得y∶z=15∶16。所以三輛汽車的速度x∶y∶z=12∶15∶16。賦值甲、乙、丙的速度分別為12、15、16,甲出發10分鐘后乙出發,則乙追上甲的時間為(分鐘),故丙出發時甲已經行駛10+40=50(分鐘),設丙追上甲所需時間是t分鐘,可得方程12×50=(16-12)×t,解得t=150。故選B。4、為幫助果農解決銷路,某企業年底買了一批水果,平均發給每部門若干筐之后還多了12筐,如果再買進8筐則每個部門可分得10筐,則這批水果共有()筐。
A、192
B、198
C、200
D、212
【答案】:答案:A
解析:由于再買進8筐則每個部門可分得10筐,則總筐數加8應能被10整除,排除B、C。將A項代入題目,可得部門數為(192+8)÷10=20(個),則原來平均發給每部門(192-12)÷20=9(筐),水果筐數為整數解,符合題意。故選A。5、145,120,101,80,65,()
A、48
B、49
C、50
D、51
【答案】:答案:A
解析:145=122+1,120=112-1,101=102+1,80=92-1,65=82+1,奇數項,每項等于首項為12,公差為-2的平方加1;偶數項,每項等于首項為11,公差為-2的平方減1,即所填數字為72-1=48。故選A。6、某樓盤的地下停車位,第一次開盤時平均價格為15萬元/個;第二次開盤時,車位的銷售量增加了一倍、銷售額增加了60%。那么,第二次開盤的車位平均價格為()。
A、10萬元/個
B、11萬元/個
C、12萬元/個
D、13萬元/個
【答案】:答案:C
解析:銷售額=平均價格×銷售量,已知第一次開盤平均價格為15萬元/個,賦銷售量為1,則銷售額為15萬。第二次開盤時,銷售量增加了一倍,即為2,銷售額增加了60%,得銷售額為15×(1+60%)=24(萬元),故第二次開盤平均價格為24÷2=12(萬元/個)。故選C。7、有蘋果若干個,若把其換成桔子,則多換5個;若把其換成菠蘿,則少掉7個,已知每個桔子4角9分錢,每個菠蘿7角錢,每個蘋果的單價是多少?()
A、5角
B、5角8分
C、5角6分
D、5角4分
【答案】:答案:C
解析:此題可理解為:把蘋果全部賣掉,得到錢若干,若用這些錢買成同樣數量的桔子,則剩下49×5=245分,若用這些錢買成同樣數量的菠蘿,則缺少70×7=490分,所以蘋果個數=(245+490)÷(70-49)=35個,蘋果總價=49×35+49×5=1960分,每個蘋果單價=1960÷35=56分=5角6分。故選C。8、7,7,9,17,43,()
A、119
B、117
C、123
D、121
【答案】:答案:C
解析:依次將相鄰兩項做差得0,2,10,26,再次做差得2,6,18。構成一個公比為3的等比數列,即所填數字為43+26+18×3=123。故選C。9、甲、乙、丙三名質檢員對一批依次編號為1~100的電腦進行質量檢測,每個人均從隨機序號開始,按順序往后檢測,如檢測到編號為100的電腦,則該質檢員的檢測工作結束。某一時刻,甲檢測了76臺電腦,乙檢測了61臺電腦,丙檢測了54臺電腦,則甲、乙、丙三人均檢測過的電腦至少有()臺。
A、12
B、15
C、16
D、18
【答案】:答案:B
解析:因為甲、乙、丙三人均從隨機序號開始,按順序往后檢測。為了使三人均檢測過的電腦最少,所以三人的檢測要更分散,因為甲檢測了76臺電腦,覆蓋面比較大,所以可以先把乙、丙共同檢測的電腦分散在序號的最兩端,最少為61+54-100=15(臺),甲會覆蓋到乙、丙檢測的公共部分,故三人均檢測過的為15臺。故選B。10、某種茶葉原價30元一包,為了促銷,降低了價格,銷量增加了二倍,收入增加了五分之三,則一包茶葉降價()元。
A、12
B、14
C、13
D、11
【答案】:答案:B
解析:設原來茶葉的銷量為1,那么現在銷量為3。原來收入為30元,現在收入為30×(1+3/5)=48元,每包茶葉為48÷3=16元,降價30-16=14元。故選B。11、3,11,13,29,31,()
A、52
B、53
C、54
D、55
【答案】:答案:D
解析:奇偶項分別相差11-3=8,29-13=16=8×2,問號-31=24=8×3則可得?=55。故選D。12、某校二年級全部共3個班的學生排隊.每排4人,5人或6人,最后一排都只有2人.這個學校二年級有()名學生。
A、120
B、122
C、121
D、123
【答案】:答案:B
解析:由題意知,學生數除以4、5、6均余2,由代入法可以得到,只有B項滿足條件。13、一條馬路的兩邊各立著10盞電燈,現在為了節省用電,決定每邊關掉3盞,但為了安全,道路起點和終點兩邊的燈必須是亮的,而且任意一邊不能連續關掉兩盞。問總共有多少種方案?()
A、120
B、320
C、400
D、420
【答案】:答案:C
解析:每一邊7盞亮著的燈形成6個空位,把3盞熄滅的燈插進去,則共有=400種方案。故選C。14、5,4,10,8,15,16,(),()
A、20,18
B、18,32
C、20,32
D、18,36
【答案】:答案:C
解析:從題干中給出的數字不難看出,奇數項5,10,15,(20)構成公差為5的等差數列,偶數項4,8,16,(32)構成公比為2的等比數列。故選C。15、有4堆木材,都堆成正三角形垛,層數分別為5,6,7,8層,那么共有木材()根。
A、110
B、100
C、120
D、130
【答案】:答案:B
解析:5層木材有1+2+3+4+5=15,6層木材有1+2+3+4+5+6=21,7層木材有1+2+3+4+5+6+7=28,8層木材有1+2+3+4+5+6+7+8=36,所以共有15+21+28+36=100根木材。故選B。16、7,7,9,17,43,()
A、119
B、117
C、123
D、121
【答案】:答案:C
解析:依次將相鄰兩項做差得0,2,10,26,再次做差得2,6,18。構成一個公比為3的等比數列,即所填數字為43+26+18×3=123。故選C。17、8,10,14,18,()
A、24
B、32
C、26
D、20
【答案】:答案:C
解析:8×2-6=10;10×2-6=14;14×2-10=18;18×2-10=26。故選C。18、將所有由1、2、3、4組成且沒有重復數字的四位數,按從小到大的順序排列,則排在第12位的四位數是()。
A、3124
B、2341
C、2431
D、3142
【答案】:答案:C
解析:當千位數字是1時有=6種四位數,當千位數字是2時也有=6種四位數,因此排在第12位的就是千位數字為2的最大四位數,即2431。故選C。19、學校舉行象棋比賽,共有甲、乙、丙、丁4支隊。規定每支隊都要和另外3支隊各比賽一場,勝得3分,敗得0分,平雙方各得1分。已知:(1)這4支隊三場比賽的總得分為4個連續的奇數;(2)乙隊總得分排在第一;(3)丁隊恰有兩場同對方打成平局,其中有一場是與丙隊打成平局的。問丙隊得幾分?()
A、1分
B、3分
C、5分
D、7分
【答案】:答案:A
解析:每支隊均比賽3場,因此最高分不超過9分,又知總得分為4個連續的奇數,因此得分有3、5、7、9和1、3、5、7兩種情況。若最高分為9分,那么排名第二的隊最多贏現場得6分,不可能得7分,不符合題意,故乙隊得7分,即2勝1平。由條件(3)知,丁隊恰有兩場同對方打成平局,積分2分,為偶數,故另一場只能為勝,共得5分。由此可知,丙隊得分為1或3分。由于丁隊一場未敗,故乙隊獲勝的兩場只能是甲隊和丙隊。目前已知丙隊戰兩場,一負一平,積1分,另一場無論是勝或平,積分均為偶數,故這一場只能為負,總積分為1分。故選A。20、一項考試共有35道試題,答對一題得2分,答錯一題扣1分,不答則不得分。一名考生一共得了47分,那么,他最多答對()題。
A、26
B、27
C、29
D、30
【答案】:答案:B
解析:設答對了x道,答錯y道,則可知2x-y=47,存在沒答題目的情況,因此x+y≤35。題干問最多答對題數,則從最大的開始代入。D選項,x=30,代入2x-y=47,解得y=13,此時x+y超過35,不符;C項x=29,y=11,此時x+y超過35,不符;B項x=27,y=7,剩余1道沒答,符合題意。故選B。21、2.1,2.2,4.1,4.4,16.1,()
A、32.4
B、16.4
C、32.16
D、16.16
【答案】:答案:D
解析:偶數項的小數部分和整數部分相同。故選D。22、某班一次數學測試,全班平均91分,其中男生平均88分,女生平均93分,則女生人數是男生人數的多少倍?()
A、0.5
B、1
C、1.5
D、2
【答案】:答案:C
解析:設男生、女生人數分別為x、y,可得88x+93y=91(x+y),解得,即女生是男生的1.5倍。故選C。23、一件商品相繼兩次分別按折扣率為10%和20%進行折扣,已知折扣后的售價為540元,那么折扣前的售價為()。
A、600元
B、680元
C、720元
D、750元
【答案】:答案:D
解析:設原售價為x元,利用“折扣后售價為540元”得x(1-10%)(1-20%)=540。解得x=750。故選D。24、5,7,4,6,4,6,()
A、4
B、5
C、6
D、7
【答案】:答案:B
解析:依次將相鄰兩個數中后一個數減去前一個數得2,-3,2,-2,2,為奇數項是2偶數項為公差為1的等差數列,即所填數字為6+(-1)=5。故選B。25、1,6,36,216,()
A、1296
B、1297
C、1299
D、1230
【答案】:答案:A
解析:數列是公比為6的等比數列,則所求項為216×6=1296(也可用尾數法,尾數為6)。故選A。26、9,20,42,86,(),350
A、172
B、174
C、180
D、182
【答案】:答案:B
解析:20=9×2+2,42=20×2+2,86=42×2+2,第一項×2+2=第二項,即所填數字為86×2+2=174。故選B。27、1,6,5,7,2,8,6,9,()
A、1
B、2
C、3
D、4
【答案】:答案:C
解析:本題為隔項遞推數列,存在關系:第三項=第二項-第一項,第五項=第四項-第三項,……因此未知項為9-6=3。故選C。28、某人租下一店面準備賣服裝,房租每月1萬元,重新裝修花費10萬元。從租下店面到開始營業花費3個月時間。開始營業后第一個月,扣除所有費用后的純利潤為3萬元。如每月純利潤都比上月增加2000元而成本不變,問該店在租下店面后第幾個月內收回投資?()
A、7
B、8
C、9
D、10
【答案】:答案:A
解析:由題意可得租下店面前3個月成本為1×3+10=13(萬元),租下店面第4個月開始營業,營業后各月獲得的純利潤構成首項為3萬元、公差為0.2萬元的等差數列:3萬元、3.2萬元、3.4萬元、3.6萬元。由3+3.2+3.4+3.6=13.2>13,即第7個月收回投資。故選A。29、3,10,31,94,(),850
A、250
B、270
C、282
D、283
【答案】:答案:D
解析:10=3×3+1,31=10×3+1,94=31×3+1,每一項等于前一項乘以3加上1,即所填數字為94×3+1=283。故選D。30、2,3,10,23,()
A、35
B、42
C、68
D、79
【答案】:答案:B
解析:相鄰兩項后一項減前一項,3-2=1,10-3=7,13-10=13,42-23=19,是一個公差為6的等差數列,即所填數字為23+19=42。故選B。解析:設每個小長方形的長為x厘米、寬為y厘米,由題意可知,2x+(x+y)=88÷2,2x=3y,得x=12,y=8。即大長方形的面積為12×8×5=480平方厘米。故選C。31、1,3,2,6,11,19,()
A、24
B、36
C、29
D、38
【答案】:答案:B
解析:該數列為和數列,即前三項之和為第四項。故空缺處應為6+11+19=36。故選B。32、如果現在是18點整,那么分針旋轉1990圈之后是幾點鐘?()
A、16
B、17
C、18
D、19
【答案】:答案:A
解析:分針旋轉1圈為一小時,所以分針旋轉12圈,時針旋轉1圈,仍為18點整。由“1990÷12=165余10”可知,此時時鐘表示的時間應是16點整。故選A。33、2,6,18,54,()
A、186
B、162
C、194
D、196
【答案】:答案:B
解析:該數列是以3為公比的等比數列,故空缺項為:54×3=162。故選B。34、小孫的口袋里有四顆糖,一顆巧克力味的,一顆蘋果味的,兩顆牛奶味的。小孫任意從口袋里取出兩顆糖,他看了看后說,其中一顆是牛奶味的。問小孫取出的另一顆糖也是牛奶味的可能性(概率)是多少?()
A、1/3
B、1/4
C、1/5
D、1/6
【答案】:答案:C
解析:兩顆都是牛奶味的糖只有一種情況,而其中至少一顆是牛奶味的糖共有5種情況:(牛奶味1、蘋果味),(牛奶味1、巧克力味),(牛奶味2、蘋果味),(牛奶味2、巧克力味),(牛奶味1、牛奶味2)。因此取出的另一顆糖也是牛奶味的概率為1/5。故選C。35、甲和乙兩個公司2014年的營業額相同。2015年乙公司受店鋪改造工程影響,營業額比上年下降300萬元。而甲公司則引入電商業務,營業額比上年增長600萬元,正好是乙公司2015年營業額的3倍。則2014年兩家公司的營業額之和為多少萬元?()
A.900
B.1200
C.1500
D.1800
【答案】:答案:C
解析:設2014年兩家公司營業額為x萬元,由題意可得萬元,則2014年兩家公司營業額為故正確答案為C。36、2012年3月份的最后一天是星期六,則2013年3月份的最后一天是()。
A、星期天
B、星期四
C、星期五
D、星期六
【答案】:答案:A
解析:從2012年3月31號到2013年3月31號,一共是365天,365÷7=52周…1天,所以星期六加一天即為星期天。故選A。37、一人騎車上班需要50分鐘,途中騎了一段時間后自行車壞了,只好推車去上班,結果晚到10分鐘,如果騎車的速度比步行的速度快一倍,則步行了多少分鐘?()
A、20
B、34
C、40
D、50
【答案】:答案:A
解析:設騎車速度為2,步行速度為1,設步行時間為t分鐘,由題意可知,50×2=2(50+10-t)+1t,得t=20,即步行了20分鐘。故選A。38、21,59,1117,2325,(),9541
A、3129
B、4733
C、6833
D、8233
【答案】:答案:B
解析:原數列各項可作如下拆分:[2|1],[5|9],[11|17],[23|25],[47|33],[95|41]。其中前半部分數字作差后構成等比數列,后半部分作差后構成等差數列。因此未知項為4733。故選B。39、0,1,3,10,()
A、101
B、102
C、103
D、104
【答案】:答案:B
解析:思路一:0×0+1=1,1×1+2=3,3×3+1=10,10×10+2=102。思路二:0(第一項)2+1=1(第二項)12+2=332+1=10102+2=102,其中所加的數呈1,2,1,2規律。思路三:各項除以3,取余數=>0,1,0,1,0,奇數項都能被3整除,偶數項除3余1。故選B。40、為幫助果農解決銷路,某企業年底買了一批水果,平均發給每部門若干筐之后還多了12筐,如果再買進8筐則每個部門可分得10筐,則這批水果共有()筐。
A、192
B、198
C、200
D、212
【答案】:答案:A
解析:由于再買進8筐則每個部門可分得10筐,則總筐數加8應能被10整除,排除B、C。將A項代入題目,可得部門數為(192+8)÷10=20(個),則原來平均發給每部門(192-12)÷20=9(筐),水果筐數為整數解,符合題意。故選A。41、-1,6,25,62,()
A、123
B、87
C、150
D、109
【答案】:答案:A
解析:-1=1-2=13-2,6=8-2=23-2,25=27-2=33-2,62=64-2=43-2,53-2=125-2=123。故選A。42、3,-6,12,-24,()
A、42
B、44
C、46
D、48
【答案】:答案:D
解析:公比為-2的等比數列。故選D。43、21,59,1117,2325,(),9541
A、3129
B、4733
C、6833
D、8233
【答案】:答案:B
解析:原數列各項可作如下拆分:[2|1],[5|9],[11|17],[23|25],[47|33],[95|41]。其中前半部分數字作差后構成等比數列,后半部分作差后構成等差數列。因此未知項為4733。故選B。44、44,52,59,73,83,94,()
A、107
B、101
C、105
D、113
【答案】:答案:A
解析:每相鄰的兩項作差,得到8,7,14,10,11,每一個差是原數列中前一項個位數與十位數字的和,即8=4+4,7=5+2,14=5+9,10=7+3,11=8+3,所以9+4=13,所以未知項為13+94=107。故選A。45、調研人員在一次市場調查活動中收回了435份調查問卷,其中80%的調查問卷上填寫了被調查者的手機號碼。那么調研人員至少需要從這些調查表中隨機抽出多少份,才能保證一定能找到兩個手機號碼后兩位相同的被調查者?()
A、101
B、175
C、188
D、200
【答案】:答案:C
解析:在435份調查問卷中有435×20%=87份沒有寫手機號;且手機號碼后兩位可能出現的情況一共10×10=100種,因此要保證一定能找到兩個手機號碼后兩位相同的被調查者,至少需要抽取87+100+1=188份。故選C。46、84,12,48,30,39,()
A、23
B、36.5
C、34.5
D、43
【答案】:答案:C
解析:依次將相鄰兩個數中前一個數減去后一個數得72,-36,18,-9,構成公比為-0.5的等比數列,即所填數字為39-4.5=34.5。故選C。47、1,8,9,4,(),1/6
A、3
B、2
C、1
D、1/3
【答案】:答案:C
解析:1=14,8=23,9=32,4=41,1=50,1/6=6(-1)。故選C。48、0,4,18,(),100
A、48
B、58
C、50
D、38
【答案】:答案:A
解析:思路一:0、4、18、48、100=>作差=>4、14、30、52=>作差=>10、16、22等差數列。思路二:13-12=0;23-22=4;33-32=18;43-42=48;53-52=100。思路三:0×1=0;1×4=4;2×9=18;3×16=48;4×25=100。思路四:1×0=0;2×2=4;3×6=18;4×12=48;5×20=100可以發現:0,2,6,(12),20依次相差2,4,(6),8。思路五:0=12×0;4=22×1;18=32×2;()=X2×Y;100=52×4所以()=42×3。49、某飲料店有純果汁(即濃度為100%)10千克,濃度為30%的濃縮還原果汁20千克。若取純果汁、濃縮還原果汁各10千克倒入10千克純凈水中,再倒入10千克的濃縮還原果汁,則得到的果汁濃度為多少。()
A、40%
B、37.5%
C、35%
D、30%
【答案】:答案:A
解析:根據題干可得,一共倒入純果汁(即濃度為100%)10千克,純凈水10千克,濃度為30%的濃縮還原果汁20千克。可知最終溶液的量為10+10+20=40(千克),最終溶質為10+20×30%=16(千克)。則最終果汁濃度=16÷40×100%=40%。故選A。50、某商店花10000元進了一批商品,按期望獲得相當于進價25%的利潤來定價。結果只銷售了商品總量的30%。為盡快完成資金周轉,商店決定打折銷售,這樣賣完全部商品后,虧本1000元。問商店是按定價打幾折銷售的?()
A、九折
B、七五折
C、六折
D、四八折
【答案】:答案:C
解析:由只銷售了總量的30%知,打折前銷售額為10000×(1+25%)×30%=3750元;設此商品打x折出售,剩余商品打折后,銷售額為10000×(1+25%)×(1-30%)x=8750x。根據虧本1000元,可得3750+8750x-10000=﹣1000,解得x=0.6,即打六折。故選C。51、某快速反應部隊運送救災物資到災區。飛機原計劃每分鐘飛行12千米,由于災情危急,飛行速度提高到每分鐘15千米,結果比原計劃提前30分鐘到達災區,則機場到災區的距離是多少千米?()
A、1600
B、1800
C、2050
D、2250
【答案】:答案:B
解析:設機場到災區的距離為x,由每分鐘飛行12千米可知,原飛行時間為;由每分鐘15千米可知,現飛行時間為。根據比原計劃提前30分鐘,可得,解得x=1800(千米)。故選B。52、3,-6,12,-24,()
A、42
B、44
C、46
D、48
【答案】:答案:D
解析:公比為-2的等比數列。故選D。53、5,12,24,36,52,()
A、58
B、62
C、68
D、72
【答案】:答案:C
解析:5=2+3,12=5+7,24=11+13,36=17+19,52=23+29,全是從小到大的質數和,所以下一個是31+37=68。故選C。54、A、B、C三個試管中各盛有10克、20克、30克水,把某種濃度的鹽水10克倒入A中,充分混合后從A中取出10克倒入B中,再充分混合后從B中取出10克倒入C中,最后得到C中鹽水的濃度為0.5%。則開始倒入試管A中的鹽水濃度是多少?()
A、12%
B、15%
C、18%
D、20%
【答案】:答案:A
解析:C中含鹽量為(30+10)×0.5%=0.2克,即從B中取出的10克中含鹽0.2克,則B的濃度為0.2÷10=2%,進而求出B中含鹽量為(20+10)×2%=0.6克,即從A中取出的10克中含鹽0.6克,可得A的濃度為0.6÷10=6%,進一步得出A中含鹽量為(10+10)×6%=1.2克,故開始倒入A中的鹽水濃度為1.2÷10=12%。故選A。55、4,8,28,216,()
A、6020
B、2160
C、4200
D、4124
【答案】:答案:A
解析:4×(8-1)=28,8×(28-1)=216,即所填數字為28×(216-1)=6020。故選A。56、3,4,10,33,136,()
A、685
B、424
C、314
D、149
【答案】:答案:A
解析:4=(3+1)×1,10=(4+1)×2,33=(10+1)×3,136=(33+1)×4,an=(an-1+1)×(n-1)(n≥2),即所填數字應為(136+1)×5=685。故選A。57、A地到B地的道路是下坡路。小周早上6:00從A地出發勻速騎車前往B地,7:00時到達兩地正中間的C地。到達B地后,小周立即勻速騎車返回,在10:00時又途經C地。此后小周的速度在此前速度的基礎上增加1米/秒。最后在11:30回到A地。問A、B兩地間的距離在以下哪個范圍內?
A.40~50公里
B.大于50公里
C.小于30公里
D.30~40公里
【答案】:答案:A
解析:設小周下坡速度為,上坡速度為。根據條件分析可列下表:在上坡階段B→C=C→A,可得,解得=3m/s,根據1m/s=3600m/h,因此。故正確答案為A。58、某制衣廠接受一批服裝訂貨任務,按計劃天數進行生產,如果每天平均生產20套服裝,就比訂貨任務少生產100套;如果每天生產23套服裝,就可超過訂貨任務20套。那么,這批服裝的訂貨任務是多少套?()
A、760
B、1120
C、900
D、850
【答案】:答案:C
解析:由題意每天生產多出3套,總共就會多生產出120,那么計劃的天數為40天,所以這批服裝為20×40+100=900(套)。故選C。59、某校二年級全部共3個班的學生排隊.每排4人,5人或6人,最后一排都只有2人.這個學校二年級有()名學生。
A、120
B、122
C、121
D、123
【答案】:答案:B
解析:由題意知,學生數除以4、5、6均余2,由代入法可以得到,只有B項滿足條件。60、某陶瓷公司要到某地推銷瓷器,公司與該地相距900千米。已知瓷器成本為每件4000元,每件瓷器運費為2.5元/千米。如果在運輸及銷售過程中瓷器的損耗為25%,那么該公司要想實現20%的利潤率,瓷器的零售價應是()元。
A、8000
B、8500
C、9600
D、1000
【答案】:答案:D
解析:以一件瓷器為例,1件瓷器成本為4000元,運費為2.5×900=2250元,則成本為4000+2250=6250元,要想實現20%的利潤率,應收入6250×(1+20%)=7500元;由于損耗,實際的銷售產品數量為1×(1-25%)=75%,所以實際零售價為7500÷75%=1000元。故選D。61、2,4,12,32,88,()
A、140
B、180
C、220
D、240
【答案】:答案:D
解析:12=2×(2+4),32=2×(4+12),88=2×(32+12),第三項=2×(第一項+第二項),即所填數字為2×(88+32)=240。故選D。62、鋼鐵廠某年總產量的1/6為型鋼類,1/7為鋼板類,鋼管類的產量正好是型鋼和鋼板產量之差的14倍,而鋼絲的產量正好是鋼管和型鋼產量之和的一半,而其它產品共為3萬噸。問該鋼鐵廠當年的產量為多少萬噸?()
A、48
B、42
C、36
D、28
【答案】:答案:D
解析:假設總產量為,則型鋼類產量為,鋼板類產量為,鋼管類為,鋼絲的產量為,則,解得萬噸,則總產量萬噸。故正確答案為D。63、2,2,3,4,9,32,()
A、129
B、215
C、257
D、283
【答案】:答案:D
解析:2×2-1=3,3×2-2=4,4×3-3=9,9×4-4=32,第n+2項=第n項×第(n+1)項-n(n=1,2,…),即所填數字為32×9-5=283。故選D。64、130,68,30,(),2
A、11
B、12
C、10
D、9
【答案】:答案:C
解析:130=53+5,68=43+4,30=33+3,10=23+2,2=13+1。故選C。65、8,3,17,5,24,9,26,18,30,()
A、22
B、25
C、33
D、36
【答案】:答案:B
解析:多重數列。很明顯數列很長,確定為多重數列。先考慮交叉,發現沒有規律,無對應的答案。因為總共十項,考慮兩兩分組,再內部作加減乘除方等運算,發現每兩項的和依次為11,22,33,44,(55=30+25)。故選B。66、2,1,2/3,1/2,()
A、3/4
B、1/4
C、2/5
D、5/6
【答案】:答案:C
解析:數列可化為4/2,4/4,4/6,4/8,分母都是4,分子2,4,6,8等差,所以后項為4/10=2/5。故選C。67、1,1,2,6,24,()
A、11
B、50
C、80
D、120
【答案】:答案:D
解析:依次將相鄰兩個數中后一個數除以前一個數得1,2,3,4,為連續自然數列,即所填數字為24×5=120。故選D。68、7.1,8.6,14.2,16.12,28.4,()
A、32.24
B、30.4
C、32.4
D、30.24
【答案】:答案:A
解析:奇數項和偶數項間隔來看,整數部分和小數部分分別構成公比為2的等比數列。故選A。69、一次數學考試共有20道題,規定:答對一題得2分,答錯一題扣1分,未答的題不計分。考試結束后,小明共得23分,他想知道自己做錯了幾道題,但只記得未答的題的數目是一個偶數。請你幫助小明計算一下,他答錯了多少道題?()
A、3
B、4
C、5
D、6
【答案】:答案:A
解析:設答對x道,答錯y道,未答z道,根據共有20道題,可得x+y+z=20;由共得23分,可得2x-y=23,由于2x為偶數,23為奇數,故y為奇數,排除B、D。代入A選項,可得2x-3=23,解得x=13,此時z=4,符合未答題目數是偶數。故選A。70、-56,25,-2,7,4,()
A、3
B、-12
C、-24
D、5
【答案】:答案:D
解析:-56-25=-3×[25-(-2)],25-(-2)=-3×(-2-7),-2-7=-3×(7-4),第(N-1)項-第N項=-3[第N項-第(N+1)項](N≥2),即所填數字為4-=5。故選D。71、2,6,13,39,15,45,23,()
A、46
B、66
C、68
D、69
【答案】:答案:D
解析:6=2×3,39=13×3,45=15×3。兩個數為一組,每組中的第二個數是第一個數的三倍,即所填數字為23×3=69。故選D。72、2,3,6,18,108,()
A、1944
B、1620
C、1296
D、1728
【答案】:答案:A
解析:2×3=6,3×6=18,6×18=108,……前兩項相乘等于下一項,則所求項為18×108,尾數為4。故選A。73、78,9,64,17,32,19,()
A、18
B、20
C、22
D、26
【答案】:答案:A
解析:兩兩相加=>87、73、81、49、51、37=>每項除以3,則余數為=>0、1、0、1、0、1。故選A。74、-2,1,31,70,112,()
A、154
B、155
C、256
D、280
【答案】:答案:B
解析:依次將相鄰兩項做差得3、30、39、42,再次做差得27、9、3,是公比為1/3的等比數列,即所填數字為(3÷3)+42+112=155。故選B。75、145,120,101,80,65,()
A、48
B、49
C、50
D、51
【答案】:答案:A
解析:145=122+1,120=112-1,101=102+1,80=92-1,65=82+1,奇數項,每項等于首項為12,公差為-2的平方加1;偶數項,每項等于首項為11,公差為-2的平方減1,即所填數字為72-1=48。故選A。76、A、B、C三個試管中各盛有10克、20克、30克水,把某種濃度的鹽水10克倒入A中,充分混合后從A中取出10克倒入B中,再充分混合后從B中取出10克倒入C中,最后得到C中鹽水的濃度為0.5%。則開始倒入試管A中的鹽水濃度是多少?()
A、12%
B、15%
C、18%
D、20%
【答案】:答案:A
解析:C中含鹽量為(30+10)×0.5%=0.2克,即從B中取出的10克中含鹽0.2克,則B的濃度為0.2÷10=2%,進而求出B中含鹽量為(20+10)×2%=0.6克,即從A中取出的10克中含鹽0.6克,可得A的濃度為0.6÷10=6%,進一步得出A中含鹽量為(10+10)×6%=1.2克,故開始倒入A中的鹽水濃度為1.2÷10=12%。故選A。77、2.08,8.16,24.32,64.64,()
A、160.28
B、124.28
C、160.56
D、124.56
【答案】:答案:A
解析:小數點之前滿足規律:(8-2)×4=24,(24-8)×4=64,(64-24)×4=160,排除B.D兩項。小數點之后構成等比數列8,16,32,64,128,小數點之后的數超過三位取后兩位,所以未知項是160.28。故選A。78、30個小朋友圍成一圈玩傳球游戲,每次球傳給下一個小朋友需要1秒。當老師喊“轉向”時,要改變傳球方向。如果從小華開始傳球,老師在游戲開始后的第16、31、49秒喊“轉向”,那么在第多少秒時,球會重新回到小華手上?()
A、68
B、69
C、70
D、71
【答案】:答案:A
解析:設小華的位置為0號,按順時針方向編號依次為0號、1號、2號、……、29號。小華以順時針方向開始傳球。①經過16秒,順時針傳到16號;②轉向:經過15秒(31-16=15),逆時針傳到1號;③轉向:經過18秒(49-31=18),順時針傳到19號;④轉向:經過19秒,逆時針傳回到小華手中。在第49+19=68(秒)時,球會重新回到小華手上。故選A。79、在某城市中,有60%的家庭訂閱某種日報,有85%的家庭有電視機。假定這兩個事件是獨立的,今隨機抽出一個家庭,所抽家庭既訂閱該種日報又有電視機的概率是()。
A、0.09
B、0.25
C、0.36
D、0.51
【答案】:答案:D
解析:由于是獨立重復試驗,故既訂閱該中日報又有電視機的概率是60%×85%=51%。故選D。80、依法納稅是公民的義務,按規定,全月工資薪金所得不超過800元的部分不必納稅,超過800元的部分,按下列分段累進計算稅款,某人5月份應交納此項稅款26.78元,則他的當月工資薪金所得介于()。
A、800~900
B、900~1200
C、1200~1500
D、1500~2800
【答案】:答案:C
解析:根據表格:工資中800~1300的部分,需納稅500×5%=25(元);還剩稅款26.78-25=1.78(元),即在1300元以上的部分為(元),則他當月工資薪金為1300+17.8=1317.8(元)。故選C。81、0,6,24,60,()
A、70
B、80
C、100
D、120
【答案】:答案:D
解析:0=0×1×2,6=1×2×3,24=2×3×4,60=3×4×5,()=4×5×6=120。另解,0=13-1,6=23-2,24=33-3,60=43-4,()=53-5=120。故選D。82、商店購入一百多件A款服裝,其單件進價為整數元,總進價為1萬元,已知單件B款服裝的定價為其進價的1.6倍,其進價為A款服裝的75%,銷售每件B款服裝的利潤為A款服裝的一半,某日商店以定價銷售A款服裝的總銷售額超過2500元,問當天至少銷售了多少件A款服裝?()
A、13
B、15
C、17
D、19
【答案】:答案:C
解析:推出A款服裝有125件,進價為80元,B款服裝進價為80×0.75=60(元),B款服裝定價為60×1.6=96(元),利潤為96-60=36(元),A款服裝利潤為36×2=72(元),所以A款服裝售價為80+72=152(元)。銷售數量至少為2500÷152=16.4,取整為17件。故選C。83、84,12,48,30,39,()
A、23
B、36.5
C、34.5
D、43
【答案】:答案:C
解析:依次將相鄰兩個數中前一個數減去后一個數得72,-36,18,-9,構成公比為-0.5的等比數列,即所填數字為39-4.5=34.5。故選C。84、4,12,8,10,()
A、6
B、8
C、9
D、24
【答案】:答案:C
解析:思路一:4-12=-812-8=48-10=-210-9=1,其中,-8、4、-2、1等比。思路二:(4+12)/2=8(12+8)/2=10(10+8)/2=/=9。故選C。85、[(9,6),42,(7,7)],[(7,3),40,(6,4)],[(8,2),(),(3,2)]
A、30
B、32
C、34
D、36
【答案】:答案:A
解析:(9-6)×(7+7)=42,(7-3)×(6+4)=40,每組中前兩項的差×后兩項的和=中間項。即所填數字為(8-2)×(3+2)=30。故選A。86、1,2,3,6,12,24,()
A、48
B、45
C、36
D、32
【答案】:答案:A
解析:1+2=3,1+2+3=6,1+2+3+6=12,1+2+3+6+12=24,第N項=第N-1項+…+第一項,即所填數字為1+2+3+6+12+24=48。故選A。87、1,1,3,7,17,41,()
A、89
B、99
C、109
D、119
【答案】:答案:B
解析:第三項=第二項×2+第一項,99=41×2+17。故選B。88、甲、乙、丙、丁四人開展羽毛球比賽,首輪每人需和另外3人各比1場,獲勝2場及以上者進入下一輪,否則淘汰。甲勝乙、丙、丁的概率分別為70%、50%、40%,問甲首輪遭淘汰的概率是多少?()
A、42.5%
B、45%
C、47.5%
D、48%
【答案】:答案:B
解析:獲勝2場及以上者進入下一輪,甲首輪遭淘汰,則甲輸了2場或者3場。分別枚舉如下:(1)甲輸三場的概率為30%×50%×60%=9%;(2)甲輸兩場有三種可能:①贏乙輸丙丁,概率為70%×50%×60%=21%;②贏丙輸乙丁,概率為30%×50%×60%=9%;③贏丁輸乙丙,概率為30%×50%×40%=6%。甲首輪遭淘汰的概率為9%+21%+9%+6%=45%。故選B。89、3,4,10,33,136,()
A、685
B、424
C、314
D、149
【答案】:答案:A
解析:4=(3+1)×1,10=(4+1)×2,33=(10+1)×3,136=(33+1)×4,an=(an-1+1)×(n-1)(n≥2),即所填數字應為(136+1)×5=685。故選A。90、102,314,526,()
A、624
B、738
C、809
D、849
【答案】:答案:B
解析:314-102=212,526-314=212。后一項-前一項=212,即所填數字為536+212=738。故選B。91、1,10,3,5,()
A、4
B、9
C、13
D、15
【答案】:答案:C
解析:把每項變成漢字為一、十、三、五、十三的筆畫數1,2,3,4,5等差。故選C。92、為了國防需要,A基地要運載1480噸的戰備物資到1100千米外的B基地。現在A基地只有一架“運9”大型運輸機和一列“貨運列車”,“運9”速度550千米每小時,載重能力為20噸,“貨運列車”速度100千米每小時,運輸能力為600噸,那么這批戰備物資到達B基地的最短時間為:
A.53小時
B.54小時
C.55小時
D.56小時
【答案】:答案:B
解析:由題意可知,運輸機運輸一次往返需要2×(1100÷550)=4小時,單位時間運輸5噸;列車運輸一次往返需要2×(1100÷100)=22小時,單位時間運輸20+噸。要求運輸時間最短,那么必然要讓單位時間運輸量大的列車盡可能多地運輸。貨運列車運輸能力為600噸,運輸總量為1480噸,因此可推知貨運列車共運輸兩次,即噸。還剩1480-1200=280噸,需要運輸機運輸280÷20=14次。且第14次不用計算返回所用的時間,則最短時間為小時。故正確答案為B。93、2,4,10,18,28,(),56
A、32
B、42
C、52
D、54
【答案】:答案:B
解析:因式分解數列。2=1×2,4=1×4,10=2×5,18=3×6,28=4×7,()=?×?,56=7×8,每一項的兩個因子之和分別為3、5、7、9、11、()、15,構成公差為2的等差數列。由此可知,空缺項的兩個因子的和為13,結合選項,只有B項的42=6×7分解后兩個因子的和為13。故選B。94、2,12,40,112,()
A、224
B、232
C、288
D、296
【答案】:答案:C
解析:原數列可以寫成1×2,3×4,5×8,7×16,前一個乘數數列為1,3,5,7,是等差數列,下一項是9,后一個乘數數列為2,4,8,16,是等比數列,下一項是32,所以原數列空缺項為9×32=288。故選C。95、2,6,18,54,()
A、186
B、162
C、194
D、196
【答案】:答案:B
解析:該數列是以3為公比的等比數列,故空缺項為:54×3=162。故選B。96、有4堆木材,都堆成正三角形垛,層數分別為5,6,7,8層,那么共有木材()根。
A、110
B、100
C、120
D、130
【答案】:答案:B
解析:5層木材有1+2+3+4+5=15,6層木材有1+2+3+4+5+6=21,7層木材有1+2+3+4+5+6+7=28,8層木材有1+2+3+4+5+6+7+8=36,所以共有15+21+28+36=100根木材。故選B。97、44,52,59,73,83,94,()
A、107
B、101
C、105
D、113
【答案】:答案:A
解析:每相鄰的兩項作差,得到8,7,14,10,11,每一個差是原數列中前一項個位數與十位數字的和,即8=4+4,7=5+2,14=5+9,10=7+3,11=8+3,所以9+4=13,所以未知項為13+94=107。故選A。98、一個四邊形廣場,它的四邊長分別是60米、72米、96米、84米,現在四邊上植樹,四角需種樹,而且每兩棵樹的間隔相等,那么,至少要種多少棵樹?()
A、22
B、25
C、26
D、30
【答案】:答案:C
解析:根據四角需種樹,且每兩棵樹的間隔相等可知,間隔距離應為四邊邊長的公約數;要使棵樹至少,則間隔距離要盡量最大,公約數最大為12(60、72、96、84的最大公約數)。故棵數=段數=長度÷間距=(60+72+84+96)÷12=26(棵)。故選C。99、學校舉行象棋比賽,共有甲、乙、丙、丁4支隊。規定每支隊都要和另外3支隊各比賽一場,勝得3分,敗得0分,平雙方各得1分。已知:(1)這4支隊三場比賽的總得分為4個連續的奇數;(2)乙隊總得分排在第一;(3)丁隊恰有兩場同對方打成平局,其中有一場是與丙隊打成平局的。問丙隊得幾分?()
A、1分
B、3分
C、5分
D、7分
【答案】:答案:A
解析:每支隊均比賽3場,因此最高分不超過9分,又知總得分為4個連續的奇數,因此得分有3、5、7、9和1、3、5、7兩種情況。若最高分為9分,那么排名第二的隊最多贏現場得6分,不可能得7分,不符合題意,故乙隊得7分,即2勝1平。由條件(3)知,丁隊恰有兩場同對方打成平局,積分2分,為偶數,故另一場只能為勝,共得5分。由此可知,丙隊得分為1或3分。由于丁隊一場未敗,故乙隊獲勝的兩場只能是甲隊和丙隊。目前已知丙隊戰兩場,一負一平,積1分,另一場無論是勝或平,積分均為偶數,故這一場只能為負,總積分為1分。故選A。100、在某城市中,有60%的家庭訂閱某種日報,有85%的家庭有電視機。假定這兩個事件是獨立的,今隨機抽出一個家庭,所抽家庭既訂閱該種日報又有電視機的概率是()。
A、0.09
B、0.25
C、0.36
D、0.51
【答案】:答案:D
解析:由于是獨立重復試驗,故既訂閱該中日報又有電視機的概率是60%×85%=51%。故選D。101、一人騎車上班需要50分鐘,途中騎了一段時間后自行車壞了,只好推車去上班,結果晚到10分鐘,如果騎車的速度比步行的速度快一倍,則步行了多少分鐘?()
A、20
B、34
C、40
D、50
【答案】:答案:A
解析:設騎車速度為2,步行速度為1,設步行時間為t分鐘,由題意可知,50×2=2(50+10-t)+1t,得t=20,即步行了20分鐘。故選A。102、設袋中裝有標著數字為1,2,…,8等8個簽,并規定標有數字1,4,7的為中獎號。甲、乙、丙、丁
4人依次從袋中隨機抽取一個簽、已知丙中獎了、則乙不中獎的概率為多少?()
A、5/8
B、3/7
C、3/8
D、5/7
【答案】:答案:D
解析:已知丙中獎,則剩余7個簽,還有2個是中獎號,可得乙不中獎概率為。故選D。103、5,10,20,(),80
A、30
B、40
C、50
D、60
【答案】:答案:B
解析:公比為2的等比數列。故選B。104、鐘表有一個時針和一個分針,分針每一小時轉360度,時針每12小時轉360度,則24小時內時針和分針成直角共多少次:
A.28
B.36
C.44
D.48
【答案】:答案:C
解析:一般情況,1小時內會出現2次垂直情況,但是3點、9點、15點、21點這4個特殊時間,只有1次垂直,所以有。故正確答案為C。105、1,10,3,5,()
A、4
B、9
C、13
D、15
【答案】:答案:C
解析:把每項變成漢字為一、十、三、五、十三的筆畫數1,2,3,4,5等差。故選C。106、8,10,14,18,()
A、24
B、32
C、26
D、20
【答案】:答案:C
解析:8×2-6=10;10×2-6=14;14×2-10=18;18×2-10=26。故選C。107、21,27,40,61,94,148,()
A、239
B、242
C、246
D、252
【答案】:答案:A
解析:依次將相鄰兩項作差得6,13,21,33,54;二次作差得7,8,12,21;再次作差得12,22,32,是連續自然數的平方。即所填數字為42+21+54+148=239。故選A。108、甲、乙和丙三種不同濃度、不同規格的酒精溶液,每瓶重量分別為3公斤、7公斤和9公斤,如果將甲乙各一瓶、甲丙各一瓶和乙丙各一瓶分別混合,得到的酒精濃度分別為50%,50%和60%。如果將三種酒精合各一瓶混合,得到的酒精中要加入多少公斤純凈水后,其濃度正好是50%?()
A、1
B、1.3
C、1.6
D、1.9
【答案】:答案:C
解析:甲乙各一瓶、甲丙各一瓶和乙丙各一瓶分別混合,相當于兩瓶甲、兩瓶乙、兩瓶丙混合,前兩種濃度都是50%,所以只需要加入適量水使得乙丙混合濃度由60%變為50%即可。設加水x,可將濃度為60%的酒精溶液溶度變為50%,即,解得x=3.2(公斤)。此時甲乙,甲丙和乙丙溶液各一瓶混合后濃度必然為50%。若甲、乙和丙各一瓶混合時濃度仍然為50%,則需加水為(公斤)。故選C。109、某班有56名學生,每人都參加了a、b、c、d、e五個興趣班中的一個。已知有27人參加a興趣班,參加b興趣班的人數第二多,參加c、d興趣班的人數相同,e興趣班的參加人數最少,只有6人,問參加b興趣班的學生有多少個?()
A、7個
B、8個
C、9個
D、10個
【答案】:答案:C
解析:設b班人數為x,c、d班的人數均為y,由b班人數第二多,e班人數最少,可知各班人數關系為:27>x>y>6。該班有56名學生,56=27+x+y+y+6,即x+2y=23,其中2y是偶數,23為奇數,則x為奇數,排除B、D。代入A選項,當x=7時,y=8,則x<Y,不符合題意,排除。故選C。110、5,4,10,8,15,16,(),()
A、20,18
B、18,32
C、20,32
D、18,36
【答案】:答案:C
解析:從題干中給出的數字不難看出,奇數項5,10,15,(20)構成公差為5的等差數列,偶數項4,8,16,(32)構成公比為2的等比數列。故選C。111、10,9,17,50,()
A、100
B、99
C、199
D、200
【答案】:答案:C
解析:10×1-1=9;9×2-1=17;17×3-1=50;50×4-1=199。故選C。112、5,10,20,(),80
A、30
B、40
C、50
D、60
【答案】:答案:B
解析:公比為2的等比數列。故選B。113、A、B、C三個試管中各盛有10克、20克、30克水,把某種濃度的鹽水10克倒入A中,充分混合后從A中取出10克倒入B中,再充分混合后從B中取出10克倒入C中,最后得到C中鹽水的濃度為0.5%。則開始倒入試管A中的鹽水濃度是多少?()
A、12%
B、15%
C、18%
D、20%
【答案】:答案:A
解析:C中含鹽量為(30+10)×0.5%=0.2克,即從B中取出的10克中含鹽0.2克,則B的濃度為0.2÷10=2%,進而求出B中含鹽量為(20+10)×2%=0.6克,即從A中取出的10克中含鹽0.6克,可得A的濃度為0.6÷10=6%,進一步得出A中含鹽量為(10+10)×6%=1.2克,故開始倒入A中的鹽水濃度為1.2÷10=12%。故選A。114、187,259,448,583,754,()
A、847
B、862
C、915
D、944
【答案】:答案:B
解析:各項數字和均為16。故選B。115、0,4,18,48,()
A、96
B、100
C、125
D、136
【答案】:答案:B
解析:思路一:0=0×12;4=1×22;18=2×32;48=3×42;100=4×52。思路二:1×0=0;2×2=4;3×6=18;4×12=48;5×20=100;項數12345;乘以0,2,6,12,20=>作差2,4,6,8。故選B。116、某城市居民用水價格為:每戶每月不超過5噸的部分按4元/噸收取;超過5噸不超過10噸的部分按6元/噸收取;超過10噸的部分按8元/噸收取。某戶居民兩個月共交水費108元,則該戶居民這兩個月用水總量最多為多少噸?()
A、17.25
B、21
C、21.33
D、24
【答案】:答案:B
解析:總費用一定,要使兩個月的用水總量最多,需盡量使用低價水。先將兩個月4元/噸的額度用完,花費4×5×2=40(元);再將6元/噸的額度用完,花費6×5×2=60(元)。由兩個月共交水費108元可知,還剩108-40-60=8(元),可購買1噸單價為8元/噸的水。該戶居民這兩個月用水總量最多為5×2+5×2+1=21(噸)。故選B。117、商店購入一百多件A款服裝,其單件進價為整數元,總進價為1萬元,已知單件B款服裝的定價為其進價的1.6倍,其進價為A款服裝的75%,銷售每件B款服裝的利潤為A款服裝的一半,某日商店以定價銷售A款服裝的總銷售額超過2500元,問當天至少銷售了多少件A款服裝?()
A、13
B、15
C、17
D、19
【答案】:答案:C
解析:推出A款服裝有125件,進價為80元,B款服裝進價為80×0.75=60(元),B款服裝定價為60×1.6=96(元),利潤為96-60=36(元),A款服裝利潤為36×2=72(元),所以A款服裝售價為80+72=152(元)。銷售數量至少為2500÷152=16.4,取整為17件。故選C。118、要將濃度分別為20%和5%的A、B兩種食鹽水混合配成濃度為15%的食鹽水900克,問5%的食鹽水需要多少克?()
A、250
B、285
C、300
D、325
【答案】:答案:C
解析:設需要5%的食鹽水x克,則需要20%的食鹽水(900-x)克;根據混合后濃度為15%,得[x×5%+(900-x)×20%]=900×15%,解得x=300(克)。故選C。119、-56,25,-2,7,4,()
A、3
B、-12
C、-24
D、5
【答案】:答案:D
解析:-56-25=-3×[25-(-2)],25-(-2)=-3×(-2-7),-2-7=-3×(7-4),第(N-1)項-第N項=-3[第N項-第(N+1)項](N≥2),即所填數字為4-=5。故選D。120、甲、乙二人現在的年齡之和是一個完全平方數。7年前,他們各自的年齡都是完全平方數。再過多少年,他們的年齡之和又是完全平方數?()
A、20
B、18
C、16
D、9
【答案】:答案:B
解析:設七年前甲、乙的年齡分別為x、y歲,則七年后兩人的年齡和為(x+7)+(y+7)=x+y+14,根據題意x、y、x+y+14均為完全平方數。100以內的平方數有1、4、9、16、25、36、49、64、81、100,其中1+49+14=64,1、49、64均為完全平方數,則七年前甲1歲,乙49歲,現在甲為8歲,乙為56歲,年齡和為64,甲乙年齡和為偶數,下一個平方數為偶數的是100,需要再過(100-64)÷2=18年。故選B。121、7,7,16,42,107,()
A、274
B、173
C、327
D、231
【答案】:答案:D
解析:做一次差后得到數列:13-1,23+1,33-1,43+1,53-1。故選D。122、3,11,13,29,31,()
A、52
B、53
C、54
D、55
【答案】:答案:D
解析:奇偶項分別相差11-3=8,29-13=16=8×2,問號-31=24=8×3則可得?=55。故選D。123、如果現在是18點整,那么分針旋轉1990圈之后是幾點鐘?()
A、16
B、17
C、18
D、19
【答案】:答案:A
解析:分針旋轉1圈為一小時,所以分針旋轉12圈,時針旋轉1圈,仍為18點整。由“1990÷12=165余10”可知,此時時鐘表示的時間應是16點整。故選A。124、4,12,8,10,()
A、6
B、8
C、9
D、24
【答案】:答案:C
解析:思路一:4-12=-812-8=48-10=-210-9=1,其中,-8、4、-2、1等比。思路二:(4+12)/2=8(12+8)/2=10(10+8)/2=/=9。故選C。125、甲、乙兩人在一條400米的環形跑道上從相距200米的位置出發,同向勻速跑步。當甲第三次追上乙的時候,乙跑了2000米。問甲的速度是乙的多少倍?()
A、1.2
B、1.5
C、1.6
D、2.0
【答案】:答案:B
解析:環形同點同向出發每追上一次,甲比乙多跑一圈。第一次由于是不同起點,甲比乙多跑原來的差距200米;之后兩次追上都多跑400米,甲一共比乙多跑200+400×2=1000(米)。乙跑了2000米,甲跑了3000米,時間相同,則速度比與路程比也相同,可知甲的速度是乙的3000÷2000=1.5倍。故選B。126、在某城市中,有60%的家庭訂閱某種日報,有85%的家庭有電視機。假定這兩個事件是獨立的,今隨機抽出一個家庭,所抽家庭既訂閱該種日報又有電視機的概率是()。
A、0.09
B、0.25
C、0.36
D、0.51
【答案】:答案:D
解析:由于是獨立重復試驗,故既訂閱該中日報又有電視機的概率是60%×85%=51%。故選D。127、[(9,6)42(7,7)][(7,3)40(6,4)][(8,2)()(3,2)]
A、30
B、32
C、34
D、36
【答案】:答案:A
解析:(9-6)×(7+7)=42,(7-3)×(6+4)=40,(8-2)×(3+2)=(30)。故選A。128、為幫助果農解決銷路,某企業年底買了一批水果,平均發給每部門若干筐之后還多了12筐,如果再買進8筐則每個部門可分得10筐,則這批水果共有()筐。
A、192
B、198
C、200
D、212
【答案】:答案:A
解析:由于再買進8筐則每個部門可分得10筐,則總筐數加8應能被10整除,排除B、C。將A項代入題目,可得部門數為(192+8)÷10=20(個),則原來平均發給每部門(192-12)÷20=9(筐),水果筐數為整數解,符合題意。故選A。129、8,10,14,18,()
A、24
B、32
C、26
D、20
【答案】:答案:C
解析:8×2-6=10;10×2-6=14;14×2-10=18;18×2-10=26。故選C。130、1,2,0,3,-1,4,()
A、-2
B、0
C、5
D、6
【答案】:答案:A
解析:奇數項1、0、-1、(-2)是公差為-1的等差數列;偶數項2、3、4是連續自然數。故選A。131、某城市居民用水價格為:每戶每月不超過5噸的部分按4元/噸收取;超過5噸不超過10噸的部分按6元/噸收取;超過10噸的部分按8元/噸收取。某戶居民兩個月共交水費108元,則該戶居民這兩個月用水總量最多為多少噸?()
A、17.25
B、21
C、21.33
D、24
【答案】:答案:B
解析:總費用一定,要使兩個月的用水總量最多,需盡量使用低價水。先將兩個月4元/噸的額度用完,花費4×5×2=40(元);再將6元/噸的額度用完,花費6×5×2=60(元)。由兩個月共交水費108元可知,還剩108-40-60=8(元),可購買1噸單價為8元/噸的水。該戶居民這兩個月用水總量最多為5×2+5×2+1=21(噸)。故選B。132、1/2,1,1,(),9/11,11/13
A、2
B、3
C、1
D、9
【答案】:答案:C
解析:1/2,1,1,(),9/11,11/13=>1/2,3/3,5/5,7/7,9/11,11/13=>分子1,3,5,7,9,11等差;分母2,3,5,7,11,13連續質數列。故選C。133、1,3,2,6,11,19,()
A、24
B、36
C、29
D、38
【答案】:答案:B
解析:該數列為和數列,即前三項之和為第四項。故空缺處應為6+11+19=36。故選B。134、某農場有36臺收割機,要收割完所有的麥子需要14天時間。現收割了7天后增加4臺收割機,并通過技術改造使每臺機器的效率提升,問收割完所有的麥子還需要幾天。
A.3
B.4
C.5
D.6
【答案】:答案:D
解析:方法一:賦值法,賦值每臺收割機每天的工作效率為1,則工作總量為36×14,剩下的36×7由36+4=40臺收割機完成,技術改造后每臺收割機效率為,故剩下需要的時間為。方法二:比例法。由題意,原有收割機36臺,增加4臺后變為40臺,提高效率5%后相當于原先40×(1+5%)=42臺收割機的工作效率。效率比為6∶7,故所有時間比為7∶6,還需6天即可完成。故正確答案為D。135、3,2,2,5,17,()
A、24
B、36
C、44
D、56
【答案】:答案:D
解析:依次將相鄰兩個數中后一個數減去前一個數得-1,0,3,12,再次作差得1,3,9,構成公比為3的等比數列,即所填數字為9×3+12+17=56。故選D。136、6,3,5,13,2,63,()
A、-36
B、-37
C、-38
D、-39
【答案】:答案:B
解析:6×3-5=13,3×5-13=2,5×13-2=63,第四項=第一項×第二項-第三項,即所填數字為13×2-63=-37。故選B。137、某樓盤的地下停車位,第一次開盤時平均價格為15萬元/個;第二次開盤時,車位的銷售量增加了一倍、銷售額增加了60%。那么,第二次開盤的車位平均價格為()。
A、10萬元/個
B、11萬元/個
C、12萬元/個
D、13萬元/個
【答案】:答案:C
解析:銷售額=平均價格×銷售量,已知第一次開盤平均價格為15萬元/個,賦銷售量為1,則銷售額為15萬。第二次開盤時,銷售量增加了一倍,即為2,銷售額增加了60%,得銷售額為15×(1+60%)=24(萬元),故第二次開盤平均價格為24÷2=12(萬元/個)。故選C。138、某種茶葉原價30元一包,為了促銷,降低了價格,銷量增加了二倍,收入增加了五分之三,則一包茶葉降價()元。
A、12
B、14
C、13
D、11
【答案】:答案:B
解析:設原來茶葉的銷量為1,那么現在銷量為3。原來收入為30元,現在收入為30×(1+3/5)=48元,每包茶葉為48÷3=16元,降價30-16=14元。故選B。139、6,3,5,13,2,63,()
A、-36
B、-37
C、-38
D、-39
【答案】:答案:B
解析:6×3-5=13,3×5-13=2,5×13-2=63,第四項=第一項×第二項-第三項,即所填數字為13×2-63=-37。故選B。140、2,17,29,38,44,()
A、45
B、46
C、47
D、48
【答案】:答案:C
解析:做差。第一次做差結果為15,12,9,6,所以后面一項為3,后面一項為47。故選C。141、2.08,8.16,24.32,64.64,()
A、160.28
B、124.28
C、160.56
D、124.56
【答案】:答案:A
解析:小數點之前滿足規律:(8-2)×4=24,(24-8)×4=64,(64-24)×4=160,排除B.D兩項。小數點之后構成等比數列8,16,32,64,128,小數點之后的數超過三位取后兩位,所以未知項是160.28。故選A。142、2.08,8.16,24.32,64.64,()
A、160.28
B、124.28
C、160.56
D、124.56
【答案】:答案:A
解析:小數點之前滿足規律:(8-2)×4=24,(24-8)×4=64,(64-24)×4=160,排除B.D兩項。小數點之后構成等比數列8,16,32,64,128,小數點之后的數超過三位取后兩位,所以未知項是160.28。故選A。143、某高速公路收費站對過往車輛的收費標準是:大型車30元/輛、中型車15元/輛、小型車10元/輛。某天,通過收費站的大型車與中型車的數量比是5∶6,中型車與小型車的數量比是4∶11,小型車的通行費總數比大型車的多270元,這天的收費總額是()。
A、7280元
B、7290元
C、7300元
D、7350元
【答案】:答案:B
解析:大、中、小型車的數量比為10∶12∶33。以10輛大型車、12輛中型車、33輛小型車為一組。每組小型車收費比大型車多33×10-10×30=30元。實際多270元,說明共通過了270÷30=9組。每組收費10×30+12×15+33×10=810元,收費總額為9×810=7290元。故選B。144、甲、乙和丙三種不同濃度、不同規格的酒精溶液,每瓶重量分別為3公斤、7公斤和9公斤,如果將甲乙各一瓶、甲丙各一瓶和乙丙各一瓶分別混合,得到的酒精濃度分別為50%,50%和60%。如果將三種酒精合各一瓶混合,得到的酒精中要加入多少公斤純凈水后,其濃度正好是50%?()
A、1
B、1.3
C、1.6
D、1.9
【答案】:答案:C
解析:甲乙各一瓶、甲丙各一瓶和乙丙各一瓶分別混合,相當于兩瓶甲、兩瓶乙、兩瓶丙
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 寶雞中北職業學院《智慧供應鏈管理》2023-2024學年第一學期期末試卷
- 山東交通學院《小兒傳染病學》2023-2024學年第一學期期末試卷
- 山東藥品食品職業學院《現代傳媒與文學》2023-2024學年第一學期期末試卷
- 長治職業技術學院《移動通信與無線技術》2023-2024學年第一學期期末試卷
- 電焊試題及答案
- 電大建筑材料試題及答案
- 西安郵電大學《細胞生物學及技術》2023-2024學年第一學期期末試卷
- 山西經貿職業學院《禽生產學》2023-2024學年第一學期期末試卷
- 貴州護理職業技術學院《數據可視化基礎實驗》2023-2024學年第一學期期末試卷
- 濟南護理職業學院《ORACE數據庫》2023-2024學年第一學期期末試卷
- 0號柴油安全技術說明書SDS
- GB/T 16106-1995車間空氣中氫氧化鈉的酸堿滴定測定方法
- GB/T 10095.1-2008圓柱齒輪精度制第1部分:輪齒同側齒面偏差的定義和允許值
- GA/T 1454-2018信息安全技術網絡型流量控制產品安全技術要求
- 湖北省荊州市商投資區國有企業招聘考試《綜合基礎知識》國考真題
- midas系列培訓之橋梁檢測專題
- 易制毒企業崗位職責(共19篇)
- 中小學生防溺水安全教育PPT課件【愛生命防溺水】
- 礦山開采承包合同參考
- GA∕T 743-2016 閃光警告信號燈
- 《體操—隊形隊列》單元教學計劃和教案
評論
0/150
提交評論