




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
公務員考試數量關系練習題第一部分單選題(200題)1、0,1,3,10,()
A、101
B、102
C、103
D、104
【答案】:答案:B
解析:思路一:0×0+1=1,1×1+2=3,3×3+1=10,10×10+2=102。思路二:0(第一項)2+1=1(第二項)12+2=332+1=10102+2=102,其中所加的數呈1,2,1,2規律。思路三:各項除以3,取余數=>0,1,0,1,0,奇數項都能被3整除,偶數項除3余1。故選B。2、2,3,13,175,()
A、30625
B、30651
C、30759
D、30952
【答案】:答案:B
解析:第一項乘以2,然后加第二項的平方等于第三項。2×2+3×3=13。第二項乘以2,然后加第三項的平方等于第四項。3×2+13×13=175。第三項乘以2,然后加第四項的平方等于第五項。13×2+175×175=30651。故選B。3、30個小朋友圍成一圈玩傳球游戲,每次球傳給下一個小朋友需要1秒。當老師喊“轉向”時,要改變傳球方向。如果從小華開始傳球,老師在游戲開始后的第16、31、49秒喊“轉向”,那么在第多少秒時,球會重新回到小華手上?()
A、68
B、69
C、70
D、71
【答案】:答案:A
解析:設小華的位置為0號,按順時針方向編號依次為0號、1號、2號、……、29號。小華以順時針方向開始傳球。①經過16秒,順時針傳到16號;②轉向:經過15秒(31-16=15),逆時針傳到1號;③轉向:經過18秒(49-31=18),順時針傳到19號;④轉向:經過19秒,逆時針傳回到小華手中。在第49+19=68(秒)時,球會重新回到小華手上。故選A。4、鋼鐵廠某年總產量的1/6為型鋼類,1/7為鋼板類,鋼管類的產量正好是型鋼和鋼板產量之差的14倍,而鋼絲的產量正好是鋼管和型鋼產量之和的一半,而其它產品共為3萬噸。問該鋼鐵廠當年的產量為多少萬噸?()
A、48
B、42
C、36
D、28
【答案】:答案:D
解析:假設總產量為,則型鋼類產量為,鋼板類產量為,鋼管類為,鋼絲的產量為,則,解得萬噸,則總產量萬噸。故正確答案為D。5、為幫助果農解決銷路,某企業年底買了一批水果,平均發給每部門若干筐之后還多了12筐,如果再買進8筐則每個部門可分得10筐,則這批水果共有()筐。
A、192
B、198
C、200
D、212
【答案】:答案:A
解析:由于再買進8筐則每個部門可分得10筐,則總筐數加8應能被10整除,排除B、C。將A項代入題目,可得部門數為(192+8)÷10=20(個),則原來平均發給每部門(192-12)÷20=9(筐),水果筐數為整數解,符合題意。故選A。6、3,4,10,33,136,()
A、685
B、424
C、314
D、149
【答案】:答案:A
解析:4=(3+1)×1,10=(4+1)×2,33=(10+1)×3,136=(33+1)×4,an=(an-1+1)×(n-1)(n≥2),即所填數字應為(136+1)×5=685。故選A。7、5,7,4,6,4,6,()
A、4
B、5
C、6
D、7
【答案】:答案:B
解析:依次將相鄰兩個數中后一個數減去前一個數得2,-3,2,-2,2,為奇數項是2偶數項為公差為1的等差數列,即所填數字為6+(-1)=5。故選B。8、25,32,37,47,()
A、56
B、57
C、58
D、590
【答案】:答案:C
解析:25+2+5=32,32+3+2=37,37+3+7=47,第一項+第一項的個位數字+第一項的十位數字=第二項,即所填數字為47+4+7=58。故選C。9、某城市居民用水價格為:每戶每月不超過5噸的部分按4元/噸收取;超過5噸不超過10噸的部分按6元/噸收取;超過10噸的部分按8元/噸收取。某戶居民兩個月共交水費108元,則該戶居民這兩個月用水總量最多為多少噸?()
A、17.25
B、21
C、21.33
D、24
【答案】:答案:B
解析:總費用一定,要使兩個月的用水總量最多,需盡量使用低價水。先將兩個月4元/噸的額度用完,花費4×5×2=40(元);再將6元/噸的額度用完,花費6×5×2=60(元)。由兩個月共交水費108元可知,還剩108-40-60=8(元),可購買1噸單價為8元/噸的水。該戶居民這兩個月用水總量最多為5×2+5×2+1=21(噸)。故選B。10、某商店花10000元進了一批商品,按期望獲得相當于進價25%的利潤來定價。結果只銷售了商品總量的30%。為盡快完成資金周轉,商店決定打折銷售,這樣賣完全部商品后,虧本1000元。問商店是按定價打幾折銷售的?()
A、九折
B、七五折
C、六折
D、四八折
【答案】:答案:C
解析:由只銷售了總量的30%知,打折前銷售額為10000×(1+25%)×30%=3750元;設此商品打x折出售,剩余商品打折后,銷售額為10000×(1+25%)×(1-30%)x=8750x。根據虧本1000元,可得3750+8750x-10000=﹣1000,解得x=0.6,即打六折。故選C。11、1806,1510,1214,918,()
A、724
B、722
C、624
D、622
【答案】:答案:D
解析:百位和千位看做一個數列,是18,15,12,9,構成公差為-3的等差數列,所以下一項應為6;十位和個位看做一個數列,是06,10,14,18,構成公差為4的等差數列,所以下一項應為22。故未知項應為622。故選D。12、學校舉行象棋比賽,共有甲、乙、丙、丁4支隊。規定每支隊都要和另外3支隊各比賽一場,勝得3分,敗得0分,平雙方各得1分。已知:(1)這4支隊三場比賽的總得分為4個連續的奇數;(2)乙隊總得分排在第一;(3)丁隊恰有兩場同對方打成平局,其中有一場是與丙隊打成平局的。問丙隊得幾分?()
A、1分
B、3分
C、5分
D、7分
【答案】:答案:A
解析:每支隊均比賽3場,因此最高分不超過9分,又知總得分為4個連續的奇數,因此得分有3、5、7、9和1、3、5、7兩種情況。若最高分為9分,那么排名第二的隊最多贏現場得6分,不可能得7分,不符合題意,故乙隊得7分,即2勝1平。由條件(3)知,丁隊恰有兩場同對方打成平局,積分2分,為偶數,故另一場只能為勝,共得5分。由此可知,丙隊得分為1或3分。由于丁隊一場未敗,故乙隊獲勝的兩場只能是甲隊和丙隊。目前已知丙隊戰兩場,一負一平,積1分,另一場無論是勝或平,積分均為偶數,故這一場只能為負,總積分為1分。故選A。13、3,30,129,348,()
A、532
B、621
C、656
D、735
【答案】:答案:D
解析:3=13+2、30=33+3、129=53+4、348=73+5,其中底數1、3、5、7構成連續的奇數列,另一部分2、3、4、5是連續的自然數,即所填數字為93+6=735。故選D。14、將17拆分成若干個自然數的和,這些自然數的乘積的最大值是多少?()
A、256
B、486
C、556
D、376
【答案】:答案:B
解析:若把一個整數拆分成若干個自然數之和,有大于4的數,則把大于4的這個數再分成一個2與另一個大于2的自然數之和,則這個2與大于2的這個數的乘積肯定比這個大于4的數更大。另外,如果拆分的數中含有1,則對乘積增大沒有貢獻,因此不能考慮。因此,要使加數之積最大,加數只能是2和3。但是,若加數中含有3個2,則不如將它換成2個3。因為2×2×2=8,而3×3=9。故拆分出的自然數中,至多含有兩個2,而其余都是3。故將17拆分為17=3+3+3+3+3+2時,其乘積最大,最大值為243×2=486。故選B。15、某快速反應部隊運送救災物資到災區。飛機原計劃每分鐘飛行12千米,由于災情危急,飛行速度提高到每分鐘15千米,結果比原計劃提前30分鐘到達災區,則機場到災區的距離是多少千米?()
A、1600
B、1800
C、2050
D、2250
【答案】:答案:B
解析:設機場到災區的距離為x,由每分鐘飛行12千米可知,原飛行時間為;由每分鐘15千米可知,現飛行時間為。根據比原計劃提前30分鐘,可得,解得x=1800(千米)。故選B。16、在某城市中,有60%的家庭訂閱某種日報,有85%的家庭有電視機。假定這兩個事件是獨立的,今隨機抽出一個家庭,所抽家庭既訂閱該種日報又有電視機的概率是()。
A、0.09
B、0.25
C、0.36
D、0.51
【答案】:答案:D
解析:由于是獨立重復試驗,故既訂閱該中日報又有電視機的概率是60%×85%=51%。故選D。17、從A地到B地為上坡路。自行車選手從A地出發按A-B-A-B的路線行進,全程平均速度為從B地出發,按B-A-B-A的路線行進的全程平均速度的4/5,如自行車選手在上坡路與下坡路上分別以固定速度勻速騎行,問他上坡的速度是下坡速度的()。
A、1/2
B、1/3
C、2/3
D、3/5
【答案】:答案:A
解析:S=VT,當S一定的時候,VT成反比,兩次行程的平均速度之比是4:5,故兩次行程所用時間之比T1:T2=5:4。設一個下坡的時間是1,一個上坡的時間是n,則上坡速度是下坡速度的1/n。A-B-A-B的過程經歷了2個上坡和1個下坡,則T1=2n+1;B-A-B-A的過程經歷了2個下坡和1個上坡,則T2=2+n,而T1:T2=5:4=(2n+1):(2+n),解得n=2。故選A。18、2,3,6,15,()
A、25
B、36
C、42
D、64
【答案】:答案:C
解析:相鄰兩項間做差。做差后得到的數為1,3,9;容易觀察出這是一個等比數列,所以做差數列的下一項為27,則答案為15+27=42。故選C。19、甲、乙兩人在一條400米的環形跑道上從相距200米的位置出發,同向勻速跑步。當甲第三次追上乙的時候,乙跑了2000米。問甲的速度是乙的多少倍?()
A、1.2
B、1.5
C、1.6
D、2.0
【答案】:答案:B
解析:環形同點同向出發每追上一次,甲比乙多跑一圈。第一次由于是不同起點,甲比乙多跑原來的差距200米;之后兩次追上都多跑400米,甲一共比乙多跑200+400×2=1000(米)。乙跑了2000米,甲跑了3000米,時間相同,則速度比與路程比也相同,可知甲的速度是乙的3000÷2000=1.5倍。故選B。20、5,7,4,6,4,6,()
A、4
B、5
C、6
D、7
【答案】:答案:B
解析:依次將相鄰兩個數中后一個數減去前一個數得2,-3,2,-2,2,為奇數項是2偶數項為公差為1的等差數列,即所填數字為6+(-1)=5。故選B。21、一人騎車上班需要50分鐘,途中騎了一段時間后自行車壞了,只好推車去上班,結果晚到10分鐘,如果騎車的速度比步行的速度快一倍,則步行了多少分鐘?()
A、20
B、34
C、40
D、50
【答案】:答案:A
解析:設騎車速度為2,步行速度為1,設步行時間為t分鐘,由題意可知,50×2=2(50+10-t)+1t,得t=20,即步行了20分鐘。故選A。22、一人騎車上班需要50分鐘,途中騎了一段時間后自行車壞了,只好推車去上班,結果晚到10分鐘,如果騎車的速度比步行的速度快一倍,則步行了多少分鐘?()
A、20
B、34
C、40
D、50
【答案】:答案:A
解析:設騎車速度為2,步行速度為1,設步行時間為t分鐘,由題意可知,50×2=2(50+10-t)+1t,得t=20,即步行了20分鐘。故選A。23、從1開始的第2009個奇數是()。
A、4011
B、4013
C、4015
D、4017
【答案】:答案:D
解析:因為每兩個相鄰的奇數均相差2,而第2009個奇數是第1個奇數1之后的第2008個奇數,那么第2009個奇數應該是1+2008×2=4017。故選D。24、一個四邊形廣場,它的四邊長分別是60米、72米、96米、84米,現在四邊上植樹,四角需種樹,而且每兩棵樹的間隔相等,那么,至少要種多少棵樹?()
A、22
B、25
C、26
D、30
【答案】:答案:C
解析:根據四角需種樹,且每兩棵樹的間隔相等可知,間隔距離應為四邊邊長的公約數;要使棵樹至少,則間隔距離要盡量最大,公約數最大為12(60、72、96、84的最大公約數)。故棵數=段數=長度÷間距=(60+72+84+96)÷12=26(棵)。故選C。25、一件商品相繼兩次分別按折扣率為10%和20%進行折扣,已知折扣后的售價為540元,那么折扣前的售價為()。
A、600元
B、680元
C、720元
D、750元
【答案】:答案:D
解析:設原售價為x元,利用“折扣后售價為540元”得x(1-10%)(1-20%)=540。解得x=750。故選D。26、過長方體一側面的兩條對角線交點,與下底面四個頂點連得一四棱錐,則四棱錐與長方體的體積比為多少?()
A、1:8
B、1:6
C、1:4
D、1:3
【答案】:答案:B
解析:等底等高時,椎體體積是柱體體積的,而題中椎體的高是長方體高的一半,四棱錐與長方體的體積之比為1:6。故選B。27、60名員工投票從甲、乙、丙三人中評選最佳員工,選舉時每人只能投票選舉一人,得票最多的人當選。開票中途累計,前30張選票中,甲得15票,乙得10票,丙得5票。問在尚未統計的選票中,甲至少再得多少票就一定當選?()
A、15
B、13
C、10
D、8
【答案】:答案:B
解析:構造最不利,由題意,還剩30名員工沒有投票,考慮最不利的情況,乙對甲的威脅最大,先給乙5張選票,甲乙即各有15張選票,其余25張選票中,甲只要在獲得13張選票就可以確定當選。故選B。28、一只天平有7克、2克砝碼各一個,如果需要將140克的鹽分成50克、90克各一份,至少要稱幾次?()
A、六
B、五
C、四
D、三
【答案】:答案:D
解析:第一步,用天平將140g分成兩份,每份70g;第二步,將其中的一份70g,平均分成兩份35g;第三步,將砝碼分別放在天平的兩邊,將35g鹽放在天平兩邊至平衡,則每邊為(35+7+2)÷2=22g,則砝碼為2g的一邊,鹽就為20g,將其與第一步剩下的70g鹽混合,得到90g,剩下的就是50g。即一共稱了三次。故選D。29、1,1,3,7,17,41,()
A、89
B、99
C、109
D、119
【答案】:答案:B
解析:第三項=第二項×2+第一項,99=41×2+17。故選B。30、3,-6,12,-24,()
A、42
B、44
C、46
D、48
【答案】:答案:D
解析:公比為-2的等比數列。故選D。31、甲、乙二人現在的年齡之和是一個完全平方數。7年前,他們各自的年齡都是完全平方數。再過多少年,他們的年齡之和又是完全平方數?()
A、20
B、18
C、16
D、9
【答案】:答案:B
解析:設七年前甲、乙的年齡分別為x、y歲,則七年后兩人的年齡和為(x+7)+(y+7)=x+y+14,根據題意x、y、x+y+14均為完全平方數。100以內的平方數有1、4、9、16、25、36、49、64、81、100,其中1+49+14=64,1、49、64均為完全平方數,則七年前甲1歲,乙49歲,現在甲為8歲,乙為56歲,年齡和為64,甲乙年齡和為偶數,下一個平方數為偶數的是100,需要再過(100-64)÷2=18年。故選B。32、某年的10月里有5個星期六,4個星期日,則這年的10月1日是?()
A、星期一
B、星期二
C、星期三
D、星期四
【答案】:答案:D
解析:10月有31天,因為有5個星期六,4個星期日,所以10月31日是星期六。31=4×7+3,所以10月3日也是星期六,故10月1日是星期四。故選D。33、2012年3月份的最后一天是星期六,則2013年3月份的最后一天是()。
A、星期天
B、星期四
C、星期五
D、星期六
【答案】:答案:A
解析:從2012年3月31號到2013年3月31號,一共是365天,365÷7=52周…1天,所以星期六加一天即為星期天。故選A。34、某旅游部門規劃一條從甲景點到乙景點的旅游線路,經測試,旅游船從甲到乙順水勻速行駛需3小時;從乙返回甲逆水勻速行駛需4小時。假設水流速度恒定,甲乙之間的距離為y公里,旅游船在靜水中勻速行駛y公里需要x小時,則x滿足的方程為()。
A、1/3-1/x=1/x-1/4
B、1/3-1/x=1/4+1/x
C、1/(x+3)=1/4-1/x
D、1/(4-x)=1/x+1/3
【答案】:答案:A
解析:由題意可知,旅游船的靜水速度為y/x公里/時,順水速度為y/3公里/時,逆水速度為y/4公里/時。由水速=水速度-靜水速度=靜水速度-逆水速度,我們可得:y/3-y/x=y/x-y/4,消去y,得:1/3-1/x=1/x-1/4,故選A。考點點撥:解決流水問題的關鍵在于找出船速、水速、順水速度和逆水速度四個量,然后根據其之間的關系求出未知量。故選A。35、44,52,59,73,83,94,()
A、107
B、101
C、105
D、113
【答案】:答案:A
解析:每相鄰的兩項作差,得到8,7,14,10,11,每一個差是原數列中前一項個位數與十位數字的和,即8=4+4,7=5+2,14=5+9,10=7+3,11=8+3,所以9+4=13,所以未知項為13+94=107。故選A。36、3,11,13,29,31,()
A、52
B、53
C、54
D、55
【答案】:答案:D
解析:奇偶項分別相差11-3=8,29-13=16=8×2,問號-31=24=8×3則可得?=55。故選D。37、130,68,30,(),2
A、11
B、12
C、10
D、9
【答案】:答案:C
解析:130=53+5,68=43+4,30=33+3,10=23+2,2=13+1。故選C。38、2,3,7,22,155,()
A、2901
B、3151
C、3281
D、3411
【答案】:答案:D
解析:7=3×2+1,22=7×3+1,155=22×7+1,即所填數字為22×155+1=3411。故選D。39、21,59,1117,2325,(),9541
A、3129
B、4733
C、6833
D、8233
【答案】:答案:B
解析:原數列各項可作如下拆分:[2|1],[5|9],[11|17],[23|25],[47|33],[95|41]。其中前半部分數字作差后構成等比數列,后半部分作差后構成等差數列。因此未知項為4733。故選B。40、2/3,1/2,3/7,7/18,()
A、4/11
B、5/12
C、7/15
D、3/16
【答案】:答案:A
解析:4/11,2/3=4/6,1/2=5/10,3/7=6/14,…分子是4、5、6、7,接下來是8.分母是6、10、14、18,接下來是22。故選A。41、三個學校的志愿隊分別去敬老院照顧老人,A學校志愿隊每隔7天去一次,B學校志愿隊每隔9天去一次,C學校志愿隊每隔14天去一次,三個隊伍周三第一次同時去敬老院,問下次同時去敬老院是周幾?()
A、周三
B、周四
C、周五
D、周六
【答案】:答案:B
解析:根據每隔7天去一次,可知A每8天去一次敬老院,同理,B、C每10天、15天去一次敬老院。下次同時去敬老院應該為120(8、10、15的最小公倍數)天后。每周7天,120÷7=17…1,故三人下次同時去敬老院應該是周三后推一天,即周四。故選B。42、某農戶在魚塘里放養了一批桂花魚苗。過了一段時間,為了得知魚苗存活數量,他先從魚塘中捕出200條魚,做上標記之后,再放回魚塘,過幾天后,再從魚塘捕出500條魚,其中有標記的魚苗有25條。假設存活的魚苗在這幾天沒有死,則這個魚塘里存活魚苗的數量最有可能是()條。
A、1600
B、2500
C、3400
D、4000
【答案】:答案:D
解析:由的25/200=500/x,解得x=4000。故選D。43、大年三十彩燈懸,彩燈齊明光燦燦,三三數時能數盡,五五數時剩一盞,七七數時剛剛好,八八數時還缺三,請你自己算一算,彩燈至少有多少盞?()
A、21
B、27
C、36
D、42
【答案】:答案:A
解析:由三三數時能數盡、七七數時剛剛好可知,彩燈的數量能同時被3和7整除,排除B、C。又由五五數時剩一盞可知,彩燈的數量除以5余1,排除D。故選A。44、10,9,17,50,()
A、100
B、99
C、199
D、200
【答案】:答案:C
解析:10×1-1=9;9×2-1=17;17×3-1=50;50×4-1=199。故選C。45、2,6,30,210,2310,()
A、30160
B、30030
C、40300
D、32160
【答案】:答案:B
解析:依次將相鄰兩個數中后一個數除以前一個數得3,5,7,11,為一個質數數列,即所填數字為2310×13=30030。故選B。46、3,30,129,348,()
A、532
B、621
C、656
D、735
【答案】:答案:D
解析:3=13+2、30=33+3、129=53+4、348=73+5,其中底數1、3、5、7構成連續的奇數列,另一部分2、3、4、5是連續的自然數,即所填數字為93+6=735。故選D。47、甲種酒精有4升,乙種酒精有6升,混合成的酒精含酒精62%;如果兩種酒精溶液一樣多,混合成的酒精溶液含酒精61%,乙種酒精溶液含有純酒精百分之幾?()
A、56
B、66
C、58
D、64
【答案】:答案:B
解析:設甲種酒精濃度x%,乙種酒精濃度y%。那么,4×x%+6×y%=(4+6)×62%,x%+y%=2×61%,得x=56,y=66,即乙種酒精濃度為66%。故選B。48、2/3,1/2,3/7,7/18,()
A、4/11
B、5/12
C、7/15
D、3/16
【答案】:答案:A
解析:4/11,2/3=4/6,1/2=5/10,3/7=6/14,…分子是4、5、6、7,接下來是8.分母是6、10、14、18,接下來是22。故選A。49、某飲料店有純果汁(即濃度為100%)10千克,濃度為30%的濃縮還原果汁20千克。若取純果汁、濃縮還原果汁各10千克倒入10千克純凈水中,再倒入10千克的濃縮還原果汁,則得到的果汁濃度為多少。()
A、40%
B、37.5%
C、35%
D、30%
【答案】:答案:A
解析:根據題干可得,一共倒入純果汁(即濃度為100%)10千克,純凈水10千克,濃度為30%的濃縮還原果汁20千克。可知最終溶液的量為10+10+20=40(千克),最終溶質為10+20×30%=16(千克)。則最終果汁濃度=16÷40×100%=40%。故選A。50、一條馬路的兩邊各立著10盞電燈,現在為了節省用電,決定每邊關掉3盞,但為了安全,道路起點和終點兩邊的燈必須是亮的,而且任意一邊不能連續關掉兩盞。問總共有多少種方案?()
A、120
B、320
C、400
D、420
【答案】:答案:C
解析:每一邊7盞亮著的燈形成6個空位,把3盞熄滅的燈插進去,則共有=400種方案。故選C。51、21,59,1117,2325,(),9541
A、3129
B、4733
C、6833
D、8233
【答案】:答案:B
解析:原數列各項可作如下拆分:[2|1],[5|9],[11|17],[23|25],[47|33],[95|41]。其中前半部分數字作差后構成等比數列,后半部分作差后構成等差數列。因此未知項為4733。故選B。52、有一1500米的環形跑道,甲,乙二人同時同地出發,若同方向跑,50分鐘后甲比乙多跑一圈,若以反方向跑,2分鐘后二人相遇,則乙的速度為()。
A、330米/分鐘
B、360米/分鐘
C、375米/分鐘
D、390米/分鐘
【答案】:答案:B
解析:同向追及50分鐘后甲比乙多跑一圈得:(V甲-V乙)×50=1500;由反向跑2分鐘后相遇有:(V甲+V乙)×2=1500,解得V乙=360(米/分鐘)。故選B。53、某制衣廠接受一批服裝訂貨任務,按計劃天數進行生產,如果每天平均生產20套服裝,就比訂貨任務少生產100套;如果每天生產23套服裝,就可超過訂貨任務20套。那么,這批服裝的訂貨任務是多少套?()
A、760
B、1120
C、900
D、850
【答案】:答案:C
解析:由題意每天生產多出3套,總共就會多生產出120,那么計劃的天數為40天,所以這批服裝為20×40+100=900(套)。故選C。54、22×32×42×52值為多少?()
A、1437536
B、1527536
C、1436536
D、1537536
【答案】:答案:D
解析:原式中42是3的倍數,則原式結果應能被3整除。選項中只有D能被3整除。故選D。55、2,3,6,18,108,()
A、1944
B、1620
C、1296
D、1728
【答案】:答案:A
解析:2×3=6,3×6=18,6×18=108,……前兩項相乘等于下一項,則所求項為18×108,尾數為4。故選A。56、某人租下一店面準備賣服裝,房租每月1萬元,重新裝修花費10萬元。從租下店面到開始營業花費3個月時間。開始營業后第一個月,扣除所有費用后的純利潤為3萬元。如每月純利潤都比上月增加2000元而成本不變,問該店在租下店面后第幾個月內收回投資?()
A、7
B、8
C、9
D、10
【答案】:答案:A
解析:由題意可得租下店面前3個月成本為1×3+10=13(萬元),租下店面第4個月開始營業,營業后各月獲得的純利潤構成首項為3萬元、公差為0.2萬元的等差數列:3萬元、3.2萬元、3.4萬元、3.6萬元。由3+3.2+3.4+3.6=13.2>13,即第7個月收回投資。故選A。57、3,10,31,94,(),850
A、250
B、270
C、282
D、283
【答案】:答案:D
解析:10=3×3+1,31=10×3+1,94=31×3+1,每一項等于前一項乘以3加上1,即所填數字為94×3+1=283。故選D。58、某服裝店有一批襯衣共76件,分別賣給了33位顧客,每位顧客最多買了3件。襯衣定價為100元,買1件按原價,買2件總價打九折,買3件總價打八折。最后賣完這批襯衣共收入6460元,則買了3件的顧客有()位。
A.4
B.8
C.14
D.15
【答案】:答案:C
解析:由題意可設買了1件、2件、3件衣服的人數分別為x、y、z人,則可得x+y+z=33,x+2y+3z=76,,聯立求解可得x=4,y=15,z=14。故正確答案為C。59、學校舉行象棋比賽,共有甲、乙、丙、丁4支隊。規定每支隊都要和另外3支隊各比賽一場,勝得3分,敗得0分,平雙方各得1分。已知:(1)這4支隊三場比賽的總得分為4個連續的奇數;(2)乙隊總得分排在第一;(3)丁隊恰有兩場同對方打成平局,其中有一場是與丙隊打成平局的。問丙隊得幾分?()
A、1分
B、3分
C、5分
D、7分
【答案】:答案:A
解析:每支隊均比賽3場,因此最高分不超過9分,又知總得分為4個連續的奇數,因此得分有3、5、7、9和1、3、5、7兩種情況。若最高分為9分,那么排名第二的隊最多贏現場得6分,不可能得7分,不符合題意,故乙隊得7分,即2勝1平。由條件(3)知,丁隊恰有兩場同對方打成平局,積分2分,為偶數,故另一場只能為勝,共得5分。由此可知,丙隊得分為1或3分。由于丁隊一場未敗,故乙隊獲勝的兩場只能是甲隊和丙隊。目前已知丙隊戰兩場,一負一平,積1分,另一場無論是勝或平,積分均為偶數,故這一場只能為負,總積分為1分。故選A。60、3,11,13,29,31,()
A、52
B、53
C、54
D、55
【答案】:答案:D
解析:奇偶項分別相差11-3=8,29-13=16=8×2,問號-31=24=8×3則可得?=55。故選D。61、從A地到B地為上坡路。自行車選手從A地出發按A-B-A-B的路線行進,全程平均速度為從B地出發,按B-A-B-A的路線行進的全程平均速度的4/5,如自行車選手在上坡路與下坡路上分別以固定速度勻速騎行,問他上坡的速度是下坡速度的()。
A、1/2
B、1/3
C、2/3
D、3/5
【答案】:答案:A
解析:S=VT,當S一定的時候,VT成反比,兩次行程的平均速度之比是4:5,故兩次行程所用時間之比T1:T2=5:4。設一個下坡的時間是1,一個上坡的時間是n,則上坡速度是下坡速度的1/n。A-B-A-B的過程經歷了2個上坡和1個下坡,則T1=2n+1;B-A-B-A的過程經歷了2個下坡和1個上坡,則T2=2+n,而T1:T2=5:4=(2n+1):(2+n),解得n=2。故選A。62、2,1,2/3,1/2,()
A、3/4
B、1/4
C、2/5
D、5/6
【答案】:答案:C
解析:數列可化為4/2,4/4,4/6,4/8,分母都是4,分子2,4,6,8等差,所以后項為4/10=2/5。故選C。63、1,2,0,3,-1,4,()
A、-2
B、0
C、5
D、6
【答案】:答案:A
解析:奇數項1、0、-1、(-2)是公差為-1的等差數列;偶數項2、3、4是連續自然數。故選A。64、60名員工投票從甲、乙、丙三人中評選最佳員工,選舉時每人只能投票選舉一人,得票最多的人當選。開票中途累計,前30張選票中,甲得15票,乙得10票,丙得5票。問在尚未統計的選票中,甲至少再得多少票就一定當選?()
A、15
B、13
C、10
D、8
【答案】:答案:B
解析:構造最不利,由題意,還剩30名員工沒有投票,考慮最不利的情況,乙對甲的威脅最大,先給乙5張選票,甲乙即各有15張選票,其余25張選票中,甲只要在獲得13張選票就可以確定當選。故選B。65、有一個五位數,左邊的三位數比右邊的兩位數的4倍還多4,如果把右邊兩位數移到最前面,新的五位數比原來的2倍還多11122,則原來的五位數是()。
A、18044
B、24059
C、27267
D、30074
【答案】:答案:B
解析:多位數問題考慮用代入排除法解題。代入A選項,180=44×4+4,但44180≠18044×2+11122,不符合題意,排除;代入B選項,240=59×4+4,59240=24059×2+11122,符合題意,正確。故選B。66、2,6,18,54,()
A、186
B、162
C、194
D、196
【答案】:答案:B
解析:該數列是以3為公比的等比數列,故空缺項為:54×3=162。故選B。67、某種細胞開始時有2個,1小時后分裂成4個并死去1個,2小時后分裂成6個并死去1個,3小時后分裂成10個并死去1個……按此規律,6小時后細胞存活的個數有多少?()
A、63
B、65
C、67
D、71
【答案】:答案:B
解析:1小時后細胞存活的個數為2×2-1=3;2小時后為2×3-1=5;3小時后為2×5-1=9……按此規律,n小時后細胞存活的個數為。故6小時后細胞存活的個數是(個)。故選B。68、1,2,0,3,-1,4,()
A、-2
B、0
C、5
D、6
【答案】:答案:A
解析:奇數項1、0、-1、(-2)是公差為-1的等差數列;偶數項2、3、4是連續自然數。故選A。69、41,59,32,68,72,()
A、28
B、36
C、40
D、48
【答案】:答案:A
解析:兩兩分組得到(41,59),(32,68),(72,()),發現組內做和均為100。故選A。70、5,7,4,6,4,6,()
A、4
B、5
C、6
D、7
【答案】:答案:B
解析:依次將相鄰兩個數中后一個數減去前一個數得2,-3,2,-2,2,奇數項是2,偶數項構成公差為1的等差數列,即所填數字為6+(-1)=5。故選B。71、如果現在是18點整,那么分針旋轉1990圈之后是幾點鐘?()
A、16
B、17
C、18
D、19
【答案】:答案:A
解析:分針旋轉1圈為一小時,所以分針旋轉12圈,時針旋轉1圈,仍為18點整。由“1990÷12=165余10”可知,此時時鐘表示的時間應是16點整。故選A。72、某小區有40%的住戶訂閱日報,有15%的住戶同時訂閱日報和時報,至少有75%的住戶至少訂閱兩種報紙中的一種,問訂閱時報的比例至少為多少?()
A、35%
B、50%
C、55%
D、60%
【答案】:答案:B
解析:設訂閱時報的住戶為x,至少訂閱一種報紙的人數為40%+x-15%。由至少75%的住戶至少訂閱兩種報紙中的一種得,40%+x-15%≥75%,解得x≥50%。故選B。73、一項考試共有35道試題,答對一題得2分,答錯一題扣1分,不答則不得分。一名考生一共得了47分,那么,他最多答對()題。
A、26
B、27
C、29
D、30
【答案】:答案:B
解析:設答對了x道,答錯y道,則可知2x-y=47,存在沒答題目的情況,因此x+y≤35。題干問最多答對題數,則從最大的開始代入。D選項,x=30,代入2x-y=47,解得y=13,此時x+y超過35,不符;C項x=29,y=11,此時x+y超過35,不符;B項x=27,y=7,剩余1道沒答,符合題意。故選B。74、25與一個三位數相乘個位是0,與這個三位數相加有且只有一次進位,像這樣的三位數總共有多少個? ()
A、48
B、126
C、174
D、180
【答案】:答案:C
解析:因為25與一個三位數相乘個位是0,所以這個三位數個位上的數是0、2、4、6、8。又因為與這個三位數相加有且只有一次進位,所以當個位是0、2、4時,十位必須是8或9,百位是1-8八個數都可以,這種情況有48(8乘2乘3等于48)個數滿足條件;當個位是6或8時,十位可以是0、1、2、3、4、5、6七個數,百位是1-9九個數,這種情況有126(9乘7乘2等于126)個數滿足條件;終上所述一共有174(48+126=174)個,即:像這樣的三位數總共有174個。故選C。75、8,16,22,24,()
A、18
B、22
C、26
D、28
【答案】:答案:A
解析:8×2-0=16,16×2-10=22,22×2-20=24,前一項×2-修正項=后一項。即所填數字為24×2-30=18。故選A。76、10,9,17,50,()
A、100
B、99
C、199
D、200
【答案】:答案:C
解析:10×1-1=9;9×2-1=17;17×3-1=50;50×4-1=199。故選C。77、4,5,7,9,13,15,()
A、17
B、19
C、18
D、20
【答案】:答案:B
解析:各項減2后為質數列,故下一項為17+2=19。故選B。78、小張購買了2個蘋果、3根香蕉、4個面包和5塊蛋糕,共消費58元。如果四種商品的單價都是正整數且各不相同,則每塊蛋糕的價格最高可能為多少元?()
A、5
B、6
C、7
D、8
【答案】:答案:D
解析:設蘋果、香蕉、面包、蛋糕的單價分別為x、y、z、w,根據共消費58元,得2x+3y+4z+5w=58。代入排除,根據最高,優先從值最大的選項代入。D選項,當w=8時,可得2x+3y+4z=18,由2x、4z、18均為偶數,則3y為偶數,即y為偶數且小于6。當y=2,有2x+4z=12,即x+2z=6,均為正整數且各不相同,若z=1,則x=4,此時滿足題意。故選D。79、8,3,17,5,24,9,26,18,30,()
A、22
B、25
C、33
D、36
【答案】:答案:B
解析:多重數列。很明顯數列很長,確定為多重數列。先考慮交叉,發現沒有規律,無對應的答案。因為總共十項,考慮兩兩分組,再內部作加減乘除方等運算,發現每兩項的和依次為11,22,33,44,(55=30+25)。故選B。80、某一學校有500人,其中選修數學的有359人,選修文學的有408人,那么兩種課程都選的學生至少有多少?()
A、165人
B、203人
C、267人
D、199人
【答案】:答案:C
解析:設至少有x人兩種課程都選,則359-x+408-x+x≤500,解得x≥267,則兩種課程都選的學生至少有267人。故選C。81、老王和老趙分別參加4門培訓課的考試,兩人的平均分數分別為82和90分,單人的每門成績都為整數且彼此不相等。其中老王成績最高的一門和老趙成績最低的一門課分數相同,問老趙成績最高的一門課最多比老王成績最低的一門課高多少分?()
A、20
B、22
C、24
D、26
【答案】:答案:D
解析:最值問題中構造數列。老趙4門比老王高(90-82)×4=32分。由于老王的成績最高的一門和老趙成績最低的一門相等,而每人的各個成績都不相等,求老趙最高的一門最多比老王成績最低的一門高多少分,則應該使老趙的其他兩門分數盡可能低,而老王的其他兩門分數盡可能高,則可設老王的第三高分數為x,則第二高的分數為x+1,則最高分數為x+2,等于老趙最低的分數x+2,則老趙第三高分數為x+3,第二高分數為x+4,構造完數列后,可以得到老趙的三課的分數比老王高6分,一共高32分,所以老趙最高的一門最多比老王成績最低的一門高32-6=26分。故選D。82、1,3,2,6,11,19,()
A、24
B、36
C、29
D、38
【答案】:答案:B
解析:該數列為和數列,即前三項之和為第四項。故空缺處應為6+11+19=36。故選B。83、甲、乙兩人在一條400米的環形跑道上從相距200米的位置出發,同向勻速跑步。當甲第三次追上乙的時候,乙跑了2000米。問甲的速度是乙的多少倍?()
A、1.2
B、1.5
C、1.6
D、2.0
【答案】:答案:B
解析:環形同點同向出發每追上一次,甲比乙多跑一圈。第一次由于是不同起點,甲比乙多跑原來的差距200米;之后兩次追上都多跑400米,甲一共比乙多跑200+400×2=1000(米)。乙跑了2000米,甲跑了3000米,時間相同,則速度比與路程比也相同,可知甲的速度是乙的3000÷2000=1.5倍。故選B。84、25與一個三位數相乘個位是0,與這個三位數相加有且只有一次進位,像這樣的三位數總共有多少個? ()
A、48
B、126
C、174
D、180
【答案】:答案:C
解析:因為25與一個三位數相乘個位是0,所以這個三位數個位上的數是0、2、4、6、8。又因為與這個三位數相加有且只有一次進位,所以當個位是0、2、4時,十位必須是8或9,百位是1-8八個數都可以,這種情況有48(8乘2乘3等于48)個數滿足條件;當個位是6或8時,十位可以是0、1、2、3、4、5、6七個數,百位是1-9九個數,這種情況有126(9乘7乘2等于126)個數滿足條件;終上所述一共有174(48+126=174)個,即:像這樣的三位數總共有174個。故選C。85、某木場有甲,乙,丙三位木匠師傅生產桌椅,甲每天能生產12張書桌或13把椅子;乙每天能生產9張書桌或12把椅子,丙每天能生產9張書桌或15把椅子,現在書桌和椅子要配套生產(每套一張書桌一把椅子),則7天內這三位師傅最多可以生產桌椅()套。
A、116
B、129
C、132
D、142
【答案】:答案:B
解析:將甲、乙、丙三位木匠師傅生產桌椅的效率列表如下,分析可知,甲生產書桌的相對效率最高,丙生產椅子的相對效率最高,則安排甲7天全部生產書桌,丙7天全部生產椅子,乙協助甲丙完成。甲7天可生產桌子12×7=84(張),丙7天可生產椅子15×7=105(把)。設乙生產書桌x天,則生產椅子(7-x)天,當生產的書桌數與椅子數相同時,獲得套數最多,可列方程84+9x=105+12×(7-x),解得x=5,則乙可生產書桌9×5=45(張)。故7天內這三位師傅最多可以生產桌椅84+45=129(套)。故選B。86、6,6,12,36,()
A、124
B、140
C、144
D、164
【答案】:答案:C
解析:兩兩相除。6/6=1,6/12=1/2,12/36=1/3,下個數為36/()=1/4。故選C。87、某飲料店有純果汁(即濃度為100%)10千克,濃度為30%的濃縮還原果汁20千克。若取純果汁、濃縮還原果汁各10千克倒入10千克純凈水中,再倒入10千克的濃縮還原果汁,則得到的果汁濃度為多少。()
A、40%
B、37.5%
C、35%
D、30%
【答案】:答案:A
解析:根據題干可得,一共倒入純果汁(即濃度為100%)10千克,純凈水10千克,濃度為30%的濃縮還原果汁20千克。可知最終溶液的量為10+10+20=40(千克),最終溶質為10+20×30%=16(千克)。則最終果汁濃度=16÷40×100%=40%。故選A。88、12,27,72,(),612
A、108
B、188
C、207
D、256
【答案】:答案:C
解析:(第一項-3)×3=第二項,(72-3)×3=(207),(207-3)×3=612。故選C。89、調研人員在一次市場調查活動中收回了435份調查問卷,其中80%的調查問卷上填寫了被調查者的手機號碼。那么調研人員至少需要從這些調查表中隨機抽出多少份,才能保證一定能找到兩個手機號碼后兩位相同的被調查者?()
A、101
B、175
C、188
D、200
【答案】:答案:C
解析:在435份調查問卷中有435×20%=87份沒有寫手機號;且手機號碼后兩位可能出現的情況一共10×10=100種,因此要保證一定能找到兩個手機號碼后兩位相同的被調查者,至少需要抽取87+100+1=188份。故選C。90、5,17,21,25,()
A、30
B、31
C、32
D、34
【答案】:答案:B
解析:都為奇數。故選B。91、7.1,8.6,14.2,16.12,28.4,()
A、32.24
B、30.4
C、32.4
D、30.24
【答案】:答案:A
解析:奇數項和偶數項間隔來看,整數部分和小數部分分別構成公比為2的等比數列。故選A。92、0,4,18,(),100
A、48
B、58
C、50
D、38
【答案】:答案:A
解析:思路一:0、4、18、48、100=>作差=>4、14、30、52=>作差=>10、16、22等差數列。思路二:13-12=0;23-22=4;33-32=18;43-42=48;53-52=100。思路三:0×1=0;1×4=4;2×9=18;3×16=48;4×25=100。思路四:1×0=0;2×2=4;3×6=18;4×12=48;5×20=100可以發現:0,2,6,(12),20依次相差2,4,(6),8。思路五:0=12×0;4=22×1;18=32×2;()=X2×Y;100=52×4所以()=42×3。93、-56,25,-2,7,4,()
A、3
B、-12
C、-24
D、5
【答案】:答案:D
解析:-56-25=-3×[25-(-2)],25-(-2)=-3×(-2-7),-2-7=-3×(7-4),第(N-1)項-第N項=-3[第N項-第(N+1)項](N≥2),即所填數字為4-=5。故選D。94、祖父今年65歲,3個孫子的年齡分別是15歲、13歲與9歲,問多少年后3個孫子的年齡之和等于祖父的年齡?()
A、23
B、14
C、25
D、16
【答案】:答案:B
解析:設n年后3個孫子的年齡之和等于祖父的年齡,可列方程:65+n=(15+n)+(13+n)+(9+n),解得n=14。故選B。95、某種茶葉原價30元一包,為了促銷,降低了價格,銷量增加了二倍,收入增加了五分之三,則一包茶葉降價()元。
A、12
B、14
C、13
D、11
【答案】:答案:B
解析:設原來茶葉的銷量為1,那么現在銷量為3。原來收入為30元,現在收入為30×(1+3/5)=48元,每包茶葉為48÷3=16元,降價30-16=14元。故選B。96、2.1,2.2,4.1,4.4,16.1,()
A、32.4
B、16.4
C、32.16
D、16.16
【答案】:答案:D
解析:偶數項的小數部分和整數部分相同。故選D。97、從A地到B地為上坡路。自行車選手從A地出發按A-B-A-B的路線行進,全程平均速度為從B地出發,按B-A-B-A的路線行進的全程平均速度的4/5,如自行車選手在上坡路與下坡路上分別以固定速度勻速騎行,問他上坡的速度是下坡速度的()。
A、1/2
B、1/3
C、2/3
D、3/5
【答案】:答案:A
解析:S=VT,當S一定的時候,VT成反比,兩次行程的平均速度之比是4:5,故兩次行程所用時間之比T1:T2=5:4。設一個下坡的時間是1,一個上坡的時間是n,則上坡速度是下坡速度的1/n。A-B-A-B的過程經歷了2個上坡和1個下坡,則T1=2n+1;B-A-B-A的過程經歷了2個下坡和1個上坡,則T2=2+n,而T1:T2=5:4=(2n+1):(2+n),解得n=2。故選A。98、2,6,18,54,()
A、186
B、162
C、194
D、196
【答案】:答案:B
解析:該數列是以3為公比的等比數列,故空缺項為:54×3=162。故選B。99、2,5,9,19,37,75,()
A、140
B、142
C、146
D、149
【答案】:答案:C
解析:方法一:2×2+1=5,5×2-1=9,9×2+1=19,19×2-1=37,37×2+1=75,奇數項,每項乘以2加上1等于后一項;偶數項,每項乘以2減去1等于后一項,即所填數字為75×2-1=149。方法二:2×2+5=9,5×2+9=19,9×2+19=37,19×2+37=75,第三項=第一項×2+第二項,即所填數字為37×2+75=149。故選C。100、33.1,88.1,47.1,()
A、29.3
B、34.5
C、16.1
D、28.9
【答案】:答案:C
解析:小數點左邊:33、88、47、16成奇、偶、奇、偶的規律,小數點右邊:1、1、1、1等差。故選C。101、2,3,13,175,()
A、30625
B、30651
C、30759
D、30952
【答案】:答案:B
解析:第一項乘以2,然后加第二項的平方等于第三項。2×2+3×3=13。第二項乘以2,然后加第三項的平方等于第四項。3×2+13×13=175。第三項乘以2,然后加第四項的平方等于第五項。13×2+175×175=30651。故選B。102、學校舉行運動會,要求按照紅、黃、綠、紫的顏色插彩旗于校門口,請問第58面旗是什么顏色?()
A、黃
B、紅
C、綠
D、紫
【答案】:答案:A
解析:根據“按照紅、黃、綠、紫”可知,四個顏色為一個周期,則58÷4=14...2,故第58面旗是14個周期后的第二面,即為黃色。故選A。103、一條馬路的兩邊各立著10盞電燈,現在為了節省用電,決定每邊關掉3盞,但為了安全,道路起點和終點兩邊的燈必須是亮的,而且任意一邊不能連續關掉兩盞。問總共有多少種方案?()
A、120
B、320
C、400
D、420
【答案】:答案:C
解析:每一邊7盞亮著的燈形成6個空位,把3盞熄滅的燈插進去,則共有=400種方案。故選C。104、為幫助果農解決銷路,某企業年底買了一批水果,平均發給每部門若干筐之后還多了12筐,如果再買進8筐則每個部門可分得10筐,則這批水果共有()筐。
A、192
B、198
C、200
D、212
【答案】:答案:A
解析:由于再買進8筐則每個部門可分得10筐,則總筐數加8應能被10整除,排除B、C。將A項代入題目,可得部門數為(192+8)÷10=20(個),則原來平均發給每部門(192-12)÷20=9(筐),水果筐數為整數解,符合題意。故選A。105、4,12,8,10,()
A、6
B、8
C、9
D、24
【答案】:答案:C
解析:思路一:4-12=-812-8=48-10=-210-9=1,其中,-8、4、-2、1等比。思路二:(4+12)/2=8(12+8)/2=10(10+8)/2=/=9。故選C。106、226,264,316,388,()
A、236
B、386
C、486
D、566
【答案】:答案:C
解析:226=225+1=152+13,264=256+8=162+23,316=289+27=172+33,388=324+64=182+43,由此可以推知下一項應為192+53=486。故選C。107、2.1,2.2,4.1,4.4,16.1,()
A、32.4
B、16.4
C、32.16
D、16.16
【答案】:答案:D
解析:偶數項的小數部分和整數部分相同。故選D。108、1,3,2,6,11,19,()
A、24
B、36
C、29
D、38
【答案】:答案:B
解析:該數列為和數列,即前三項之和為第四項。故空缺處應為6+11+19=36。故選B。109、12,23,35,47,511,()
A、613
B、612
C、611
D、610
【答案】:答案:A
解析:數位數列,各項首位數字“1,2,3,4,5,(6)”構成等差數列,其余數字“2,3,5,7,11,(13)”構成質數數列。因此,未知項為613。故選A。110、某雜志為每篇投稿文章安排兩位審稿人,若都不同意錄用則棄用;若都同意則錄用;若兩人意見不同,則安排第三位審稿人,并根據其意見錄用或棄用,如每位審稿人錄用某篇文章的概率都是60%,則該文章最終被錄用的概率是()。
A、36%
B、50.4%
C、60%
D、64.8%
【答案】:答案:D
解析:根據題意,該文章最終被錄用可分為以下兩種情況:(1)前兩位審稿人都同意,概率為0.6×0.6=0.36;(2)前兩位審稿人只有一人同意且第三位審稿人同意,概率為;故該文章最終被錄用的概率為0.36+0.288=0.648=64.8%。故選D。111、90,85,81,78,()
A、75
B、74
C、76
D、73
【答案】:答案:C
解析:后項減去前項,可得-5、-4、-3、(-2),這是一個公差為1的等差數列,所以下一項為78-2=76。故選C。112、要將濃度分別為20%和5%的A、B兩種食鹽水混合配成濃度為15%的食鹽水900克,問5%的食鹽水需要多少克?()
A、250
B、285
C、300
D、325
【答案】:答案:C
解析:設需要5%的食鹽水x克,則需要20%的食鹽水(900-x)克;根據混合后濃度為15%,得[x×5%+(900-x)×20%]=900×15%,解得x=300(克)。故選C。113、一條馬路的兩邊各立著10盞電燈,現在為了節省用電,決定每邊關掉3盞,但為了安全,道路起點和終點兩邊的燈必須是亮的,而且任意一邊不能連續關掉兩盞。問總共有多少種方案?()
A、120
B、320
C、400
D、420
【答案】:答案:C
解析:每一邊7盞亮著的燈形成6個空位,把3盞熄滅的燈插進去,則共有=400種方案。故選C。114、玉米的正常市場價格為每公斤1.86元到2.18元,近期某地玉米價格漲至每公斤2.68元。經測算,向市場每投放儲備玉米100噸,每公斤玉米價格下降0.05元。為穩定玉米價格,向該地投放儲備玉米的數量不能超過()。
A、800噸
B、1080噸
C、1360噸
D、1640噸
【答案】:答案:D
解析:要穩定玉米價格,玉米的價格必須調整至正常區間。所以最低下降為每公斤1.86元,即下降了2.68-1.86=0.82(元)。因為每投放100噸,價格下降0.05元,所以投放玉米的數量不能超過0.82÷0.05×100=1640(噸)。故選D。115、1,2,6,30,210,()
A、1890
B、2310
C、2520
D、2730
【答案】:答案:B
解析:2÷1=2,6÷2=3,30÷6=5,210÷30=7,相鄰兩項后一項除以前一項的商構成連續的質數列,即所填數字為210×11=2310。故選B。116、某果品公司計劃安排6輛汽車運載A、B、C三種水果共32噸進入某市銷售,要求每輛車只裝同一種水果且必須裝滿,根據下表提供的信息,則有()種安排車輛方案。
A、1
B、2
C、3
D、4
【答案】:答案:A
解析:設運送三種水果的車輛數分別為X、Y、Z,根據題意可列式①X+Y+Z=6;②6X+5Y+4Z=32,X、Y、Z為車輛數都為正整數,②中6X和4Z都為偶數,所以Y必然是偶數,且Y≤4,Y=2或4。當Y=4時X=2、Z=0不符合題意,故本題解只有一組X=3、Y=2、Z=1。故選A。117、1,10,3,5,()
A、4
B、9
C、13
D、15
【答案】:答案:C
解析:把每項變成漢字為一、十、三、五、十三的筆畫數1,2,3,4,5等差。故選C。118、某水庫共有10個泄洪閘,當10個泄洪閘全部打開時,8小時可將水位由警戒水位降至安全水位;只打開6個泄洪閘時,這個過程為24個小時,如水庫每小時的入庫量穩定,問如果打開8個泄洪閘時,需要多少小時可將水位降至安全水位?()
A、10
B、12
C、14
D、16
【答案】:答案:B
解析:設水庫每小時的入庫量為x。根據題意可列方程(10-x)8=(6-x)24,解得x=4,故水庫警戒水位至安全水位的容量為(10-4)×8=48;設打開8個泄洪閘需t小時可將水位降至安全水位;則48=(8-4)t,解得t=12。故選B。119、-1,6,25,62,()
A、123
B、87
C、150
D、109
【答案】:答案:A
解析:-1=1-2=13-2,6=8-2=23-2,25=27-2=33-2,62=64-2=43-2,53-2=125-2=123。故選A。120、30,42,56,72,()
A、86
B、60
C、90
D、94
【答案】:答案:C
解析:第一次做差之后為12、14、16,是公差為2的等差數列,下一個應為18,原數列下一項為18+72=90。故選C。121、5,7,4,6,4,6,()
A、4
B、5
C、6
D、7
【答案】:答案:B
解析:依次將相鄰兩個數中后一個數減去前一個數得2,-3,2,-2,2,奇數項是2,偶數項構成公差為1的等差數列,即所填數字為6+(-1)=5。故選B。122、A、B、C三個試管中各盛有10克、20克、30克水,把某種濃度的鹽水10克倒入A中,充分混合后從A中取出10克倒入B中,再充分混合后從B中取出10克倒入C中,最后得到C中鹽水的濃度為0.5%。則開始倒入試管A中的鹽水濃度是多少?()
A、12%
B、15%
C、18%
D、20%
【答案】:答案:A
解析:C中含鹽量為(30+10)×0.5%=0.2克,即從B中取出的10克中含鹽0.2克,則B的濃度為0.2÷10=2%,進而求出B中含鹽量為(20+10)×2%=0.6克,即從A中取出的10克中含鹽0.6克,可得A的濃度為0.6÷10=6%,進一步得出A中含鹽量為(10+10)×6%=1.2克,故開始倒入A中的鹽水濃度為1.2÷10=12%。故選A。123、-56,25,-2,7,4,()
A、3
B、-12
C、-24
D、5
【答案】:答案:D
解析:-56-25=-3×[25-(-2)],25-(-2)=-3×(-2-7),-2-7=-3×(7-4),第(N-1)項-第N項=-3[第N項-第(N+1)項](N≥2),即所填數字為4-=5。故選D。124、2,3,10,23,()
A、35
B、42
C、68
D、79
【答案】:答案:B
解析:相鄰兩項后一項減前一項,3-2=1,10-3=7,13-10=13,42-23=19,是一個公差為6的等差數列,即所填數字為23+19=42。故選B。解析:設每個小長方形的長為x厘米、寬為y厘米,由題意可知,2x+(x+y)=88÷2,2x=3y,得x=12,y=8。即大長方形的面積為12×8×5=480平方厘米。故選C。125、-3,-2,5,24,61,()
A、122
B、156
C、240
D、348
【答案】:答案:A
解析:相鄰兩項逐差:因此,未知項=61+61=122。故選A。126、學校舉行象棋比賽,共有甲、乙、丙、丁4支隊。規定每支隊都要和另外3支隊各比賽一場,勝得3分,敗得0分,平雙方各得1分。已知:(1)這4支隊三場比賽的總得分為4個連續的奇數;(2)乙隊總得分排在第一;(3)丁隊恰有兩場同對方打成平局,其中有一場是與丙隊打成平局的。問丙隊得幾分?()
A、1分
B、3分
C、5分
D、7分
【答案】:答案:A
解析:每支隊均比賽3場,因此最高分不超過9分,又知總得分為4個連續的奇數,因此得分有3、5、7、9和1、3、5、7兩種情況。若最高分為9分,那么排名第二的隊最多贏現場得6分,不可能得7分,不符合題意,故乙隊得7分,即2勝1平。由條件(3)知,丁隊恰有兩場同對方打成平局,積分2分,為偶數,故另一場只能為勝,共得5分。由此可知,丙隊得分為1或3分。由于丁隊一場未敗,故乙隊獲勝的兩場只能是甲隊和丙隊。目前已知丙隊戰兩場,一負一平,積1分,另一場無論是勝或平,積分均為偶數,故這一場只能為負,總積分為1分。故選A。127、2,3,1,2,6,7,()
A、9
B、5
C、11
D、24
【答案】:答案:B
解析:依次將相隔兩項做和2+1=3、3+2=5、1+6=7、2+7=9,是公差為2的等差數列。即所填數字為(9+2)-6=5。故選B。128、2,3,6,15,()
A、25
B、36
C、42
D、64
【答案】:答案:C
解析:相鄰兩項間做差。做差后得到的數為1,3,9;容易觀察出這是一個等比數列,所以做差數列的下一項為27,則答案為15+27=42。故選C。129、-7,0,1,2,9,()
A、42
B、18
C、24
D、28
【答案】:答案:D
解析:-7=(-2)3+1;0=(-1)3+1;1=03+1;2=13+1;9=23+1;28=33+1。故選D。130、把一根鋼管鋸成5段需要8分鐘,如果把同樣的鋼管鋸成20段需要多少分鐘?()
A、32分鐘
B、38分鐘
C、40分鐘
D、152分鐘
【答案】:答案:B
解析:把一根鋼管鋸成5段需要鋸4次,所以每鋸一次需要8÷4=2(分鐘)。則鋸20段需要鋸19次,所需的時間為19×2=38(分鐘)。故選B。131、5,12,24,36,52,()
A、58
B、62
C、68
D、72
【答案】:答案:C
解析:5=2+3,12=5+7,24=11+13,36=17+19,52=23+29,全是從小到大的質數和,所以下一個是31+37=68。故選C。132、5,10,20,(),80
A、30
B、40
C、50
D、60
【答案】:答案:B
解析:公比為2的等比數列。故選B。133、A、B、C三個試管中各盛有10克、20克、30克水,把某種濃度的鹽水10克倒入A中,充分混合后從A中取出10克倒入B中,再充分混合后從B中取出10克倒入C中,最后得到C中鹽水的濃度為0.5%。則開始倒入試管A中的鹽水濃度是多少?()
A、12%
B、15%
C、18%
D、20%
【答案】:答案:A
解析:C中含鹽量為(30+10)×0.5%=0.2克,即從B中取出的10克中含鹽0.2克,則B的濃度為0.2÷10=2%,進而求出B中含鹽量為(20+10)×2%=0.6克,即從A中取出的10克中含鹽0.6克,可得A的濃度為0.6÷10=6%,進一步得出A中含鹽量為(10+10)×6%=1.2克,故開始倒入A中的鹽水濃度為1.2÷10=12%。故選A。134、80×35×15的值是()。
A、42000
B、36000
C、33000
D、48000
【答案】:答案:A
解析:如果直接進行計算,不免有些麻煩,但我們可以很容易發現45和15都有5這個因子,這其中又有80,所以我們可以對采用湊整法來進行處理。原式=80×9×5×5×3=80×25×27=2000×27=54000。本題運用了整除法。題干中有35,所以結果應有7這個因子,其應為7所整除,觀察選項。故選A。135、0,4,18,48,()
A、96
B、100
C、125
D、136
【答案】:答案:B
解析:思路一:0=0×12;4=1×22;18=2×32;48=3×42;100=4×52。思路二:1×0=0;2×2=4;3×6=18;4×12=48;5×20=100;項數12345;乘以0,2,6,12,20=>作差2,4,6,8。故選B。136、[(9,6)42(7,7)][(7,3)40(6,4)][(8,2)()(3,2)]
A、30
B、32
C、34
D、36
【答案】:答案:A
解析:(9-6)×(7+7)=42,(7-3)×(6+4)=40,(8-2)×(3+2)=(30)。故選A。137、調研人員在一次市場調查活動中收回了435份調查問卷,其中80%的調查問卷上填寫了被調查者的手機號碼。那么調研人員至少需要從這些調查表中隨機抽出多少份,才能保證一定能找到兩個手機號碼后兩位相同的被調查者?()
A、101
B、175
C、188
D、200
【答案】:答案:C
解析:在435份調查問卷中有435×20%=87份沒有寫手機號;且手機號碼后兩位可能出現的情況一共10×10=100種,因此要保證一定能找到兩個手機號碼后兩位相同的被調查者,至少需要抽取87+100+1=188份。故選C。138、某城市居民用水價格為:每戶每月不超過5噸的部分按4元/噸收取;超過5噸不超過10噸的部分按6元/噸收取;超過10噸的部分按8元/噸收取。某戶居民兩個月共交水費108元,則該戶居民這兩個月用水總量最多為多少噸?()
A、17.25
B、21
C、21.33
D、24
【答案】:答案:B
解析:總費用一定,要使兩個月的用水總量最多,需盡量使用低價水。先將兩個月4元/噸的額度用完,花費4×5×2=40(元);再將6元/噸的額度用完,花費6×5×2=60(元)。由兩個月共交水費108元可知,還剩108-40-60=8(元),可購買1噸單價為8元/噸的水。該戶居民這兩個月用水總量最多為5×2+5×2+1=21(噸)。故選B。139、12,23,34,45,56,()
A、66
B、67
C、68
D、69
【答案】:答案:B
解析:依次將相鄰兩個數中后一個數減去前一個數,構成公差為11的等差數列,即所填的數字為56+11=67。故選B。140、鐘表有一個時針和一個分針,分針每一小時轉360度,時針每12小時轉360度,則24小時內時針和分針成直角共多少次:
A.28
B.36
C.44
D.48
【答案】:答案:C
解析:一般情況,1小時內會出現2次垂直情況,但是3點、9點、15點、21點這4個特殊時間,只有1次垂直,所以有。故正確答案為C。141、41,59,32,68,72,()
A、28
B、36
C、40
D、48
【答案】:答案:A
解析:兩兩分組得到(41,59),(32,68),(72,()),發現組內做和均為100。故選A。142、團體操表演中,編號為1~100的學生按順序排成一列縱隊,編號為1的學生拿著紅、黃、藍三種顏色的旗幟,以后每隔2個學生有1人拿紅旗,每隔3個學生有1人拿藍旗,每隔6個學生有1人拿黃旗。問所有學生中有多少人拿兩種顏色以上的旗
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 安全試題及答案6
- 安全活動試題及答案
- 安全工程師考試題庫及答案
- 2025年商業銀行金融科技人才領導力與團隊建設能力培養報告
- 拔火罐培訓課件圖片
- 報社新聞培訓課件下載
- 中國卒中中心發展課件
- 原料采購管理課件
- 心電監護操作流程規范
- 公民科學素質課件
- 提高分級護理的巡視率
- 醫美行業營銷策劃方案模板
- 2025年遼寧省沈陽市中考一模道德與法治試題(原卷版+解析版)
- 2025年人教版一年級下冊數學期末模擬試卷(含答案)
- 餐廳控煙制度管理制度
- 《語文綜合實踐:走進傳統節日 探尋文化根脈》(教學設計)-2024-2025學年中職語文高教版(2023)基礎模塊下冊
- 男性生殖系統超聲
- 黑龍江省2024年普通高校招生體育類本科批院校專業組投檔分數線(歷史類)
- 兒童學習習慣養成與學習能力提升
- 水閘地基施工方案
- 《建立合適邊界:親子教育課件》
評論
0/150
提交評論