山東省泰安市、新泰市達標名校2023-2024學年中考四模數學試題含解析_第1頁
山東省泰安市、新泰市達標名校2023-2024學年中考四模數學試題含解析_第2頁
山東省泰安市、新泰市達標名校2023-2024學年中考四模數學試題含解析_第3頁
山東省泰安市、新泰市達標名校2023-2024學年中考四模數學試題含解析_第4頁
山東省泰安市、新泰市達標名校2023-2024學年中考四模數學試題含解析_第5頁
已閱讀5頁,還剩17頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

山東省泰安市、新泰市達標名校2023-2024學年中考四模數學試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(共10小題,每小題3分,共30分)1.下列計算正確的是()A.x2+x2=x4 B.x8÷x2=x4 C.x2?x3=x6 D.(-x)2-x2=02.如圖,下列條件不能判定△ADB∽△ABC的是()A.∠ABD=∠ACB B.∠ADB=∠ABCC.AB2=AD?AC D.3.下列實數中,最小的數是()A. B. C.0 D.4.下列實數為無理數的是()A.-5 B. C.0 D.π5.給出下列各數式,①②③④計算結果為負數的有()A.1個 B.2個 C.3個 D.4個6.一次函數與的圖象如圖所示,給出下列結論:①;②;③當時,.其中正確的有()A.0個 B.1個 C.2個 D.3個7.如圖,在矩形紙片ABCD中,已知AB=,BC=1,點E在邊CD上移動,連接AE,將多邊形ABCE沿直線AE折疊,得到多邊形AFGE,點B、C的對應點分別為點F、G.在點E從點C移動到點D的過程中,則點F運動的路徑長為()A.π B.π C.π D.π8.如圖,AB是⊙O的直徑,點C、D是圓上兩點,且∠AOC=126°,則∠CDB=()A.54° B.64° C.27° D.37°9.如圖,是由7個相同的小立方體木塊堆成的一個幾何體,拿掉1個小立方體木塊之后,這個幾何體的主(正)視圖沒變,則拿掉這個小立方體木塊之后的幾何體的俯視圖是()A. B. C. D.10.一組數據3、2、1、2、2的眾數,中位數,方差分別是()A.2,1,0.4 B.2,2,0.4C.3,1,2 D.2,1,0.2二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,在△ABC中,點E,F分別是AC,BC的中點,若S四邊形ABFE=9,則S三角形EFC=________.12.一個n邊形的每個內角都為144°,則邊數n為______.13.如圖,將△ABC放在每個小正方形的邊長為1的網格中,點A,點B,點C均落在格點上.(1)計算△ABC的周長等于_____.(2)點P、點Q(不與△ABC的頂點重合)分別為邊AB、BC上的動點,4PB=5QC,連接AQ、PC.當AQ⊥PC時,請在如圖所示的網格中,用無刻度的直尺,畫出線段AQ、PC,并簡要說明點P、Q的位置是如何找到的(不要求證明).___________________________.14.如果關于x的一元二次方程有兩個不相等的實數根,那么的取值范圍是__________.15.如圖所示,平行四邊形ABCD中,E、F是對角線BD上兩點,連接AE、AF、CE、CF,添加__________條件,可以判定四邊形AECF是平行四邊形.(填一個符合要求的條件即可)16.將一張矩形紙片折疊成如圖所示的圖形,若AB=6cm,則AC=cm.三、解答題(共8題,共72分)17.(8分)如圖,正方形OABC的面積為9,點O為坐標原點,點A在x軸上,點C上y軸上,點B在反比例函數y=(k>0,x>0)的圖象上,點E從原點O出發,以每秒1個單位長度的速度向x軸正方向運動,過點E作x的垂線,交反比例函數y=(k>0,x>0)的圖象于點P,過點P作PF⊥y軸于點F;記矩形OEPF和正方形OABC不重合部分的面積為S,點E的運動時間為t秒.(1)求該反比例函數的解析式.(2)求S與t的函數關系式;并求當S=時,對應的t值.(3)在點E的運動過程中,是否存在一個t值,使△FBO為等腰三角形?若有,有幾個,寫出t值.18.(8分)觀察下列等式:第1個等式:;第2個等式:;第3個等式:;第4個等式:;…請解答下列問題:按以上規律列出第5個等式:a5==;用含有n的代數式表示第n個等式:an==(n為正整數);求a1+a2+a3+a4+…+a100的值.19.(8分)某商場計劃從廠家購進甲、乙、丙三種型號的電冰箱80臺,其中甲種電冰箱的臺數是乙種電冰箱臺數的2倍.具體情況如下表:甲種乙種丙種進價(元/臺)120016002000售價(元/臺)142018602280經預算,商場最多支出132000元用于購買這批電冰箱.(1)商場至少購進乙種電冰箱多少臺?(2)商場要求甲種電冰箱的臺數不超過丙種電冰箱的臺數.為獲得最大利潤,應分別購進甲、乙、丙電冰箱多少臺?獲得的最大利潤是多少?20.(8分)如圖,在△ABC中,AB=AC,點,在邊上,.求證:.21.(8分)某校要求八年級同學在課外活動中,必須在五項球類(籃球、足球、排球、羽毛球、乒乓球)活動中任選一項(只能選一項)參加訓練,為了了解八年級學生參加球類活動的整體情況,現以八年級(2)班作為樣本,對該班學生參加球類活動的情況進行統計,并繪制了如圖所示的不完整統計表和扇形統計圖:八年級(2)班參加球類活動人數情況統計表項目籃球足球乒乓球排球羽毛球人數a6576八年級(2)班學生參加球類活動人數情況扇形統計圖根據圖中提供的信息,解答下列問題:a=,b=.該校八年級學生共有600人,則該年級參加足球活動的人數約人;該班參加乒乓球活動的5位同學中,有3位男同學(A,B,C)和2位女同學(D,E),現準備從中選取兩名同學組成雙打組合,用樹狀圖或列表法求恰好選出一男一女組成混合雙打組合的概率.22.(10分)綜合與探究如圖1,平面直角坐標系中,拋物線y=ax2+bx+3與x軸分別交于點A(﹣2,0),B(4,0),與y軸交于點C,點D是y軸負半軸上一點,直線BD與拋物線y=ax2+bx+3在第三象限交于點E(﹣4,y)點F是拋物線y=ax2+bx+3上的一點,且點F在直線BE上方,將點F沿平行于x軸的直線向右平移m個單位長度后恰好落在直線BE上的點G處.(1)求拋物線y=ax2+bx+3的表達式,并求點E的坐標;(2)設點F的橫坐標為x(﹣4<x<4),解決下列問題:①當點G與點D重合時,求平移距離m的值;②用含x的式子表示平移距離m,并求m的最大值;(3)如圖2,過點F作x軸的垂線FP,交直線BE于點P,垂足為F,連接FD.是否存在點F,使△FDP與△FDG的面積比為1:2?若存在,直接寫出點F的坐標;若不存在,說明理由.23.(12分)某中學為開拓學生視野,開展“課外讀書周”活動,活動后期隨機調查了九年級部分學生一周的課外閱讀時間,并將結果繪制成兩幅不完整的統計圖,請你根據統計圖的信息回答下列問題:(1)本次調查的學生總數為_____人,被調查學生的課外閱讀時間的中位數是_____小時,眾數是_____小時;并補全條形統計圖;(2)在扇形統計圖中,課外閱讀時間為5小時的扇形的圓心角度數是_____;(3)若全校九年級共有學生800人,估計九年級一周課外閱讀時間為6小時的學生有多少人?24.如圖,是一座古拱橋的截面圖,拱橋橋洞的上沿是拋物線形狀,當水面的寬度為10m時,橋洞與水面的最大距離是5m.經過討論,同學們得出三種建立平面直角坐標系的方案(如圖),你選擇的方案是(填方案一,方案二,或方案三),則B點坐標是,求出你所選方案中的拋物線的表達式;因為上游水庫泄洪,水面寬度變為6m,求水面上漲的高度.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解析】試題解析:A原式=2x2,故A不正確;B原式=x6,故B不正確;C原式=x5,故C不正確;D原式=x2-x2=0,故D正確;故選D考點:1.同底數冪的除法;2.合并同類項;3.同底數冪的乘法;4.冪的乘方與積的乘方.2、D【解析】

根據有兩個角對應相等的三角形相似,以及根據兩邊對應成比例且夾角相等的兩個三角形相似,分別判斷得出即可.【詳解】解:A、∵∠ABD=∠ACB,∠A=∠A,∴△ABC∽△ADB,故此選項不合題意;B、∵∠ADB=∠ABC,∠A=∠A,∴△ABC∽△ADB,故此選項不合題意;C、∵AB2=AD?AC,∴,∠A=∠A,△ABC∽△ADB,故此選項不合題意;D、=不能判定△ADB∽△ABC,故此選項符合題意.故選D.【點睛】點評:本題考查了相似三角形的判定,利用了有兩個角對應相等的三角形相似,兩邊對應成比例且夾角相等的兩個三角形相似.3、B【解析】

根據正實數都大于0,負實數都小于0,正實數大于一切負實數,兩個負實數絕對值大的反而小,進行比較.【詳解】∵<-2<0<,∴最小的數是-π,故選B.【點睛】此題主要考查了比較實數的大小,要熟練掌握任意兩個實數比較大小的方法.(1)正實數都大于0,負實數都小于0,正實數大于一切負實數,兩個負實數絕對值大的反而?。?)利用數軸也可以比較任意兩個實數的大小,即在數軸上表示的兩個實數,右邊的總比左邊的大,在原點左側,絕對值大的反而?。?、D【解析】

無理數就是無限不循環小數.理解無理數的概念,一定要同時理解有理數的概念,有理數是整數與分數的統稱.即有限小數和無限循環小數是有理數,而無限不循環小數是無理數.由此即可判定選擇項.【詳解】A、﹣5是整數,是有理數,選項錯誤;B、是分數,是有理數,選項錯誤;C、0是整數,是有理數,選項錯誤;D、π是無理數,選項正確.故選D.【點睛】此題主要考查了無理數的定義,其中初中范圍內學習的無理數有:π,2π等;開方開不盡的數;以及像0.1010010001…,等有這樣規律的數.5、B【解析】∵①;②;③;④;∴上述各式中計算結果為負數的有2個.故選B.6、B【解析】

仔細觀察圖象,①k的正負看函數圖象從左向右成何趨勢即可;②a,b看y2=x+a,y1=kx+b與y軸的交點坐標;③看兩函數圖象的交點橫坐標;④以兩條直線的交點為分界,哪個函數圖象在上面,則哪個函數值大.【詳解】①∵y1=kx+b的圖象從左向右呈下降趨勢,

∴k<0正確;

②∵y2=x+a,與y軸的交點在負半軸上,

∴a<0,故②錯誤;

③當x<3時,y1>y2錯誤;

故正確的判斷是①.

故選B.【點睛】本題考查一次函數性質的應用.正確理解一次函數的解析式:y=kx+b(k≠0)y隨x的變化趨勢:當k>0時,y隨x的增大而增大;當k<0時,y隨x的增大而減小.7、D【解析】

點F的運動路徑的長為弧FF'的長,求出圓心角、半徑即可解決問題.【詳解】如圖,點F的運動路徑的長為弧FF'的長,在Rt△ABC中,∵tan∠BAC=,∴∠BAC=30°,∵∠CAF=∠BAC=30°,∴∠BAF=60°,∴∠FAF′=120°,∴弧FF'的長=.故選D.【點睛】本題考查了矩形的性質、特殊角的三角函數值、含30°角的直角三角形的性質、弧長公式等知識,解題的關鍵是判斷出點F運動的路徑.8、C【解析】

由∠AOC=126°,可求得∠BOC的度數,然后由圓周角定理,求得∠CDB的度數.【詳解】解:∵∠AOC=126°,∴∠BOC=180°﹣∠AOC=54°,∵∠CDB=∠BOC=27°故選:C.【點睛】此題考查了圓周角定理.注意在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半.9、B【解析】

俯視圖是從上面看幾何體得到的圖形,據此進行判斷即可.【詳解】由7個相同的小立方體木塊堆成的一個幾何體,拿掉1個小立方體木塊之后,這個幾何體的主(正)視圖沒變,得拿掉第一排的小正方形,拿掉這個小立方體木塊之后的幾何體的俯視圖是,故選B.【點睛】本題主要考查了簡單幾何體的三視圖,解題時注意:俯視圖就是從幾何體上面看到的圖形.10、B【解析】試題解析:從小到大排列此數據為:1,2,2,2,3;數據2出現了三次最多為眾數,2處在第3位為中位數.平均數為(3+2+1+2+2)÷5=2,方差為[(3-2)2+3×(2-2)2+(1-2)2]=0.1,即中位數是2,眾數是2,方差為0.1.故選B.二、填空題(本大題共6個小題,每小題3分,共18分)11、3【解析】分析:由已知條件易得:EF∥AB,且EF:AB=1:2,從而可得△CEF∽△CAB,且相似比為1:2,設S△CEF=x,根據相似三角形的性質可得方程:,解此方程即可求得△EFC的面積.詳解:∵在△ABC中,點E,F分別是AC,BC的中點,∴EF是△ABC的中位線,∴EF∥AB,EF:AB=1:2,∴△CEF∽△CAB,∴S△CEF:S△CAB=1:4,設S△CEF=x,∵S△CAB=S△CEF+S四邊形ABFE,S四邊形ABFE=9,∴,解得:,經檢驗:是所列方程的解.故答案為:3.點睛:熟悉三角形的中位線定理和相似三角形的面積比等于相似比的平方是正確解答本題的關鍵.12、10【解析】

解:因為正多邊形的每個內角都相等,每個外角都相等,根據相鄰兩個內角和外角關系互補,可以求出這個多邊形的每個外角等于36°,因為多邊形的外角和是360°,所以這個多邊形的邊數等于360°÷36°=10,故答案為:1013、12連接DE與BC與交于點Q,連接DF與BC交于點M,連接GH與格線交于點N,連接MN與AB交于P.【解析】

(1)利用勾股定理求出AB,從而得到△ABC的周長;(2)取格點D,E,F,G,H,連接DE與BC交于點Q;連接DF與BC交于點M;連接GH與格線交于點N;連接MN與AB交于點P;連接AP,CQ即為所求.【詳解】解:(1)∵AC=3,BC=4,∠C=90o,∴根據勾股定理得AB=5,∴△ABC的周長=5+4+3=12.(2)取格點D,E,F,G,H,連接DE與BC交于點Q;連接DF與BC交于點M;連接GH與格線交于點N;連接MN與AB交于點P;連接AQ,CP即為所求。故答案為:(1)12;(2)連接DE與BC與交于點Q,連接DF與BC交于點M,連接GH與格線交于點N,連接MN與AB交于P.【點睛】本題涉及的知識點有:勾股定理,三角形中位線定理,軸對稱之線路最短問題.14、k>-且k≠1【解析】由題意知,k≠1,方程有兩個不相等的實數根,所以△>1,△=b2-4ac=(2k+1)2-4k2=4k+1>1.又∵方程是一元二次方程,∴k≠1,∴k>-1/4且k≠1.15、BE=DF【解析】可以添加的條件有BE=DF等;證明:∵四邊形ABCD是平行四邊形,∴AB=CD,∠ABD=∠CDB;又∵BE=DF,∴△ABE≌△CDF(SAS).∴AE=CF,∠AEB=∠CFD.

∴∠AEF=∠CFE.∴AE∥CF;∴四邊形AECF是平行四邊形.(一組對邊平行且相等的四邊形是平行四邊形)故答案為BE=DF.16、1.【解析】試題分析:如圖,∵矩形的對邊平行,∴∠1=∠ACB,∵∠1=∠ABC,∴∠ABC=∠ACB,∴AC=AB,∵AB=1cm,∴AC=1cm.考點:1軸對稱;2矩形的性質;3等腰三角形.三、解答題(共8題,共72分)17、(1)y=(x>0);(2)S與t的函數關系式為:S=﹣3t+9(0≤t≤3);S=9﹣(t>3);當S=時,對應的t值為或6;(3)當t=或或3時,使△FBO為等腰三角形.【解析】

(1)由正方形OABC的面積為9,可得點B的坐標為:(3,3),繼而可求得該反比例函數的解析式.

(2)由題意得P(t,),然后分別從當點P1在點B的左側時,S=t?(-3)=-3t+9與當點P2在點B的右側時,則S=(t-3)?=9-去分析求解即可求得答案;

(3)分別從OB=BF,OB=OF,OF=BF去分析求解即可求得答案.【詳解】解:(1)∵正方形OABC的面積為9,∴點B的坐標為:(3,3),∵點B在反比例函數y=(k>0,x>0)的圖象上,∴3=,即k=9,∴該反比例函數的解析式為:y=y=(x>0);(2)根據題意得:P(t,),分兩種情況:①當點P1在點B的左側時,S=t?(﹣3)=﹣3t+9(0≤t≤3);若S=,則﹣3t+9=,解得:t=;②當點P2在點B的右側時,則S=(t﹣3)?=9﹣;若S=,則9﹣=,解得:t=6;∴S與t的函數關系式為:S=﹣3t+9(0≤t≤3);S=9﹣(t>3);當S=時,對應的t值為或6;(3)存在.若OB=BF=3,此時CF=BC=3,∴OF=6,∴6=,解得:t=;若OB=OF=3,則3=,解得:t=;若BF=OF,此時點F與C重合,t=3;∴當t=或或3時,使△FBO為等腰三角形.【點睛】此題考查反比例函數的性質、待定系數法求函數的解析式以及等腰三角形的性質.此題難度較大,解題關鍵是注意掌握數形結合思想、分類討論思想與方程思想的應用.18、(1)(2)(3)【解析】

(1)(2)觀察知,找等號后面的式子規律是關鍵:分子不變,為1;分母是兩個連續奇數的乘積,它們與式子序號之間的關系為:序號的2倍減1和序號的2倍加1.(3)運用變化規律計算【詳解】解:(1)a5=;(2)an=;(3)a1+a2+a3+a4+…+a100.19、(1)商場至少購進乙種電冰箱14臺;(2)商場購進甲種電冰箱28臺,購進乙種電冰箱14(臺),購進丙種電冰箱38臺.【解析】

(1)設商場購進乙種電冰箱x臺,則購進甲種電冰箱2x臺,丙種電冰箱(80-3x)臺,根據“商場最多支出132000元用于購買這批電冰箱”列出不等式,解之即可得;(2)根據“總利潤=甲種冰箱利潤+乙種冰箱利潤+丙種冰箱利潤”列出W關于x的函數解析式,結合x的取值范圍,利用一次函數的性質求解可得.【詳解】(1)設商場購進乙種電冰箱x臺,則購進甲種電冰箱2x臺,丙種電冰箱(80﹣3x)臺.根據題意得:1200×2x+1600x+2000(80﹣3x)≤132000,解得:x≥14,∴商場至少購進乙種電冰箱14臺;(2)由題意得:2x≤80﹣3x且x≥14,∴14≤x≤16,∵W=220×2x+260x+280(80﹣3x)=﹣140x+22400,∴W隨x的增大而減小,∴當x=14時,W取最大值,且W最大=﹣140×14+22400=20440,此時,商場購進甲種電冰箱28臺,購進乙種電冰箱14(臺),購進丙種電冰箱38臺.【點睛】本題主要考查一次函數的應用與一元一次不等式的應用,解題的關鍵是理解題意找到題目蘊含的不等關系和相等關系,并據此列出不等式與函數解析式.20、見解析【解析】試題分析:證明△ABE≌△ACD即可.試題解析:法1:∵AB=AC,∴∠B=∠C,∵AD=CE,∴∠ADE=∠AED,∴△ABE≌△ACD,∴BE=CD,∴BD=CE,法2:如圖,作AF⊥BC于F,∵AB=AC,∴BF=CF,∵AD=AE,∴DF=EF,∴BF-DF=CF-EF,即BD=CE.21、(1)a=16,b=17.5(2)90(3)【解析】試題分析:(1)首先求得總人數,然后根據百分比的定義求解;(2)利用總數乘以對應的百分比即可求解;(3)利用列舉法,根據概率公式即可求解.試題解析:(1)a=5÷12.5%×40%=16,5÷12.5%=7÷b%,∴b=17.5,故答案為16,17.5;(2)600×[6÷(5÷12.5%)]=90(人),故答案為90;(3)如圖,∵共有20種等可能的結果,兩名主持人恰為一男一女的有12種情況,∴則P(恰好選到一男一女)==.考點:列表法與樹狀圖法;用樣本估計總體;扇形統計圖.22、(3)(﹣4,﹣6);(3)①-3;②4;(2)F的坐標為(﹣3,0)或(﹣3,).【解析】

(3)先將A(﹣3,0),B(4,0),代入y=ax3+bx+2求出a,b的值即可求出拋物線的表達式,再將E點坐標代入表達式求出y的值即可;(3)①設直線BD的表達式為y=kx+b,將B(4,0),E(﹣4,﹣6)代入求出k,b的值,再將x=0代入表達式求出D點坐標,當點G與點D重合時,可得G點坐標,GF∥x軸,故可得F的縱坐標,再將y=﹣2代入拋物線的解析式求解可得點F的坐標,再根據m=FG即可得m的值;②設點F與點G的坐標,根據m=FG列出方程化簡可得出m的二次函數關系式,再根據二次函數的圖象可得m的取值范圍;(2)分別分析當點F在x軸的左側時與右側時的兩種情況,根據△FDP與△FDG的面積比為3:3,故PD:DG=3:3.已知FP∥HD,則FH:HG=3:3.再分別設出F,G點的坐標,再根據兩點關系列出等式化簡求解即可得F的坐標.【詳解】解:(3)將A(﹣3,0),B(4,0),代入y=ax3+bx+2得:,解得:,∴拋物線的表達式為y=﹣x3+x+2,把E(﹣4,y)代入得:y=﹣6,∴點E的坐標為(﹣4,﹣6).(3)①設直線BD的表達式為y=kx+b,將B(4,0),E(﹣4,﹣6)代入得:,解得:,∴直線BD的表達式為y=x﹣2.把x=0代入y=x﹣2得:y=﹣2,∴D(0,﹣2).當點G與點D重合時,G的坐標為(0,﹣2).∵GF∥x軸,∴F的縱坐標為﹣2.將y=﹣2代入拋物線的解析式得:﹣x3+x+2=﹣2,解得:x=+3或x=﹣+3.∵﹣4<x<4,∴點F的坐標為(﹣+3,﹣2).∴m=FG=﹣3.②設點F的坐標為(x,﹣x3+x+2),則點G的坐標為(x+m,(x+m)﹣2),∴﹣x3+x+2=(x+m)﹣2,化簡得,m=﹣x3+4,∵﹣<0,∴m有最大值,當x=0時,m的最大值為4.(2)當點F在x軸的左側時,如下圖所示:∵△FDP與△FDG的面積比為3:3,∴PD:DG=3:3.∵FP∥HD,∴FH:HG=3:3.設F的坐標為(x,﹣x3+x+2),則點G的坐標為(﹣3x,﹣x﹣2),∴﹣x3+x+2=﹣x﹣2,整理得:x3﹣6x﹣36=0,解得:x=﹣3或x=4(舍去),∴點F的坐標為(﹣3,0).當點F在x軸的右側時,如下圖所示:∵△FDP與△FDG的面積比為3:3,∴PD:DG=3:3.∵FP∥HD,∴FH:HG=3:3.設F的坐標為(x,﹣x3+x+2),則點G的坐標為(3x,x﹣2),∴﹣x3+x+2=x﹣2,整理得:x3+3x﹣36=0,解得:x=﹣3或x=﹣﹣3(舍去),∴點F的坐標為(﹣3,).綜上所述,點F的坐標為(

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論