




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
江蘇省連云港市海州區四校2022年中考數學五模試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監考員收回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖,CE,BF分別是△ABC的高線,連接EF,EF=6,BC=10,D、G分別是EF、BC的中點,則DG的長為()A.6 B.5 C.4 D.32.=()A.±4 B.4 C.±2 D.23.如圖,在正方形ABCD和正方形CEFG中,點D在CG上,BC=1,CE=3,連接AF交CG于M點,則FM=()A. B. C. D.4.下列計算中,錯誤的是()A.; B.; C.; D..5.若a+b=3,,則ab等于()A.2 B.1 C.﹣2 D.﹣16.如圖,二次函數y=ax2+bx+c(a≠0)的圖象與x軸交于點A、B兩點,與y軸交于點C,對稱軸為直線x=-1,點B的坐標為(1,0),則下列結論:①AB=4;②b2-4ac>0;③ab<0;④a2-ab+ac<0,其中正確的結論有()個.A.3 B.4 C.2 D.17.如圖,點P是∠AOB外的一點,點M,N分別是∠AOB兩邊上的點,點P關于OA的對稱點Q恰好落在線段MN上,點P關于OB的對稱點R落在MN的延長線上,若PM=2.5cm,PN=3cm,MN=4cm,則線段QR的長為()A.4.5cm B.5.5cm C.6.5cm D.7cm8.世界上最小的鳥是生活在古巴的吸蜜蜂鳥,它的質量約為0.056盎司.將0.056用科學記數法表示為()A.5.6×10﹣1 B.5.6×10﹣2 C.5.6×10﹣3 D.0.56×10﹣19.如圖,在4×4正方形網格中,黑色部分的圖形構成一個軸對稱圖形,現在任意選取一個白色的小正方形并涂黑,使黑色部分的圖形仍然構成一個軸對稱圖形的概率是()A. B. C. D.10.如圖,O為原點,點A的坐標為(3,0),點B的坐標為(0,4),⊙D過A、B、O三點,點C為上一點(不與O、A兩點重合),則cosC的值為()A. B. C. D.11.數軸上有A,B,C,D四個點,其中絕對值大于2的點是()A.點A B.點B C.點C D.點D12.下列各式中計算正確的是A. B. C. D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.將一副三角尺如圖所示疊放在一起,則的值是.14.如圖,點D、E、F分別位于△ABC的三邊上,滿足DE∥BC,EF∥AB,如果AD:DB=3:2,那么BF:FC=_____.15.如圖,矩形ABCD中,AD=5,∠CAB=30°,點P是線段AC上的動點,點Q是線段CD上的動點,則AQ+QP的最小值是___________.16.已知x=2是一元二次方程x2﹣2mx+4=0的一個解,則m的值為.17.如圖,在正六邊形ABCDEF中,AC于FB相交于點G,則值為_____.18.如圖1,在Rt△ABC中,∠ACB=90°,點P以每秒2cm的速度從點A出發,沿折線AC﹣CB運動,到點B停止.過點P作PD⊥AB,垂足為D,PD的長y(cm)與點P的運動時間x(秒)的函數圖象如圖2所示.當點P運動5秒時,PD的長的值為_____.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)已知拋物線y=ax2+c(a≠0).(1)若拋物線與x軸交于點B(4,0),且過點P(1,–3),求該拋物線的解析式;(2)若a>0,c=0,OA、OB是過拋物線頂點的兩條互相垂直的直線,與拋物線分別交于A、B兩點,求證:直線AB恒經過定點(0,);(3)若a>0,c<0,拋物線與x軸交于A,B兩點(A在B左邊),頂點為C,點P在拋物線上且位于第四象限.直線PA、PB與y軸分別交于M、N兩點.當點P運動時,是否為定值?若是,試求出該定值;若不是,請說明理由.20.(6分)已知關于x的方程x2﹣6mx+9m2﹣9=1.(1)求證:此方程有兩個不相等的實數根;(2)若此方程的兩個根分別為x1,x2,其中x1>x2,若x1=2x2,求m的值.21.(6分)某車間的甲、乙兩名工人分別同時生產只同一型號的零件,他們生產的零件(只)與生產時間(分)的函數關系的圖象如圖所示.根據圖象提供的信息解答下列問題:(1)甲每分鐘生產零件_______只;乙在提高生產速度之前已生產了零件_______只;(2)若乙提高速度后,乙的生產速度是甲的倍,請分別求出甲、乙兩人生產全過程中,生產的零件(只)與生產時間(分)的函數關系式;(3)當兩人生產零件的只數相等時,求生產的時間;并求出此時甲工人還有多少只零件沒有生產.22.(8分)先化簡,,其中x=.23.(8分)如圖,平面直角坐標系中,直線與x軸,y軸分別交于A,B兩點,與反比例函數的圖象交于點.求反比例函數的表達式;若點C在反比例函數的圖象上,點D在x軸上,當四邊形ABCD是平行四邊形時,求點D的坐標.24.(10分)向陽中學校園內有一條林萌道叫“勤學路”,道路兩邊有如圖所示的路燈(在鉛垂面內的示意圖),燈柱BC的高為10米,燈柱BC與燈桿AB的夾角為120°.路燈采用錐形燈罩,在地面上的照射區域DE的長為13.3米,從D、E兩處測得路燈A的仰角分別為α和45°,且tanα=1.求燈桿AB的長度.25.(10分)如圖,在平面直角坐標系中,一次函數與反比例函數的圖像交于點和點,且經過點.求反比例函數和一次函數的表達式;求當時自變量的取值范圍.26.(12分)在平面直角坐標系xOy中,拋物線y=ax2﹣4ax+3a﹣2(a≠0)與x軸交于A,B兩(點A在點B左側).(1)當拋物線過原點時,求實數a的值;(2)①求拋物線的對稱軸;②求拋物線的頂點的縱坐標(用含a的代數式表示);(3)當AB≤4時,求實數a的取值范圍.27.(12分)如圖,以D為頂點的拋物線y=﹣x2+bx+c交x軸于A、B兩點,交y軸于點C,直線BC的表達式為y=﹣x+1.求拋物線的表達式;在直線BC上有一點P,使PO+PA的值最小,求點P的坐標;在x軸上是否存在一點Q,使得以A、C、Q為頂點的三角形與△BCD相似?若存在,請求出點Q的坐標;若不存在,請說明理由.
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、C【解析】
連接EG、FG,根據斜邊中線長為斜邊一半的性質即可求得EG=FG=BC,因為D是EF中點,根據等腰三角形三線合一的性質可得GD⊥EF,再根據勾股定理即可得出答案.【詳解】解:連接EG、FG,EG、FG分別為直角△BCE、直角△BCF的斜邊中線,∵直角三角形斜邊中線長等于斜邊長的一半∴EG=FG=BC=×10=5,∵D為EF中點∴GD⊥EF,即∠EDG=90°,又∵D是EF的中點,∴,在中,,故選C.【點睛】本題考查了直角三角形中斜邊上中線等于斜邊的一半的性質、勾股定理以及等腰三角形三線合一的性質,本題中根據等腰三角形三線合一的性質求得GD⊥EF是解題的關鍵.2、B【解析】
表示16的算術平方根,為正數,再根據二次根式的性質化簡.【詳解】解:,故選B.【點睛】本題考查了算術平方根,本題難點是平方根與算術平方根的區別與聯系,一個正數算術平方根有一個,而平方根有兩個.3、C【解析】
由正方形的性質知DG=CG-CD=2、AD∥GF,據此證△ADM∽△FGM得,求出GM的長,再利用勾股定理求解可得答案.【詳解】解:∵四邊形ABCD和四邊形CEFG是正方形,
∴AD=CD=BC=1、CE=CG=GF=3,∠ADM=∠G=90°,
∴DG=CG-CD=2,AD∥GF,
則△ADM∽△FGM,∴,即,解得:GM=,∴FM===,故選:C.【點睛】本題主要考查相似三角形的判定與性質,解題的關鍵是熟練掌握正方形的性質、相似三角形的判定與性質及勾股定理等知識點.4、B【解析】分析:根據零指數冪、有理數的乘方、分數指數冪及負整數指數冪的意義作答即可.詳解:A.,故A正確;B.,故B錯誤;C..故C正確;D.,故D正確;故選B.點睛:本題考查了零指數冪、有理數的乘方、分數指數冪及負整數指數冪的意義,需熟練掌握且區分清楚,才不容易出錯.5、B【解析】
∵a+b=3,∴(a+b)2=9∴a2+2ab+b2=9∵a2+b2=7∴7+2ab=9,7+2ab=9∴ab=1.故選B.考點:完全平方公式;整體代入.6、A【解析】
利用拋物線的對稱性可確定A點坐標為(-3,0),則可對①進行判斷;利用判別式的意義和拋物線與x軸有2個交點可對②進行判斷;由拋物線開口向下得到a>0,再利用對稱軸方程得到b=2a>0,則可對③進行判斷;利用x=-1時,y<0,即a-b+c<0和a>0可對④進行判斷.【詳解】∵拋物線的對稱軸為直線x=-1,點B的坐標為(1,0),∴A(-3,0),∴AB=1-(-3)=4,所以①正確;∵拋物線與x軸有2個交點,∴△=b2-4ac>0,所以②正確;∵拋物線開口向下,∴a>0,∵拋物線的對稱軸為直線x=-=-1,∴b=2a>0,∴ab>0,所以③錯誤;∵x=-1時,y<0,∴a-b+c<0,而a>0,∴a(a-b+c)<0,所以④正確.故選A.【點睛】本題考查了拋物線與x軸的交點:對于二次函數y=ax2+bx+c(a,b,c是常數,a≠0),△=b2-4ac決定拋物線與x軸的交點個數:△=b2-4ac>0時,拋物線與x軸有2個交點;△=b2-4ac=0時,拋物線與x軸有1個交點;△=b2-4ac<0時,拋物線與x軸沒有交點.也考查了二次函數的性質.7、A【解析】試題分析:利用軸對稱圖形的性質得出PM=MQ,PN=NR,進而利用PM=2.5cm,PN=3cm,MN=3cm,得出NQ=MN-MQ=3-2.5=2.5(cm),即可得出QR的長RN+NQ=3+2.5=3.5(cm).故選A.考點:軸對稱圖形的性質8、B【解析】
0.056用科學記數法表示為:0.056=,故選B.9、B【解析】解:∵根據軸對稱圖形的概念,軸對稱圖形兩部分沿對稱軸折疊后可重合,白色的小正方形有13個,而能構成一個軸對稱圖形的有4個情況,∴使圖中黑色部分的圖形仍然構成一個軸對稱圖形的概率是:.故選B.10、D【解析】
如圖,連接AB,由圓周角定理,得∠C=∠ABO,在Rt△ABO中,OA=3,OB=4,由勾股定理,得AB=5,∴.故選D.11、A【解析】
根據絕對值的含義和求法,判斷出絕對值等于2的數是﹣2和2,據此判斷出絕對值等于2的點是哪個點即可.【詳解】解:∵絕對值等于2的數是﹣2和2,∴絕對值等于2的點是點A.故選A.【點睛】此題主要考查了絕對值的含義和求法,要熟練掌握,解答此題的關鍵要明確:①互為相反數的兩個數絕對值相等;②絕對值等于一個正數的數有兩個,絕對值等于0的數有一個,沒有絕對值等于負數的數.③有理數的絕對值都是非負數.12、B【解析】
根據完全平方公式對A進行判斷;根據冪的乘方與積的乘方對B、C進行判斷;根據合并同類項對D進行判斷.【詳解】A.,故錯誤.B.,正確.C.,故錯誤.D.,故錯誤.故選B.【點睛】考查完全平方公式,合并同類項,冪的乘方與積的乘方,熟練掌握它們的運算法則是解題的關鍵.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、【解析】試題分析:∵∠BAC=∠ACD=90°,∴AB∥CD.∴△ABE∽△DCE.∴.∵在Rt△ACB中∠B=45°,∴AB=AC.∵在RtACD中,∠D=30°,∴.∴.14、3:2【解析】因為DE∥BC,所以,因為EF∥AB,所以,所以,故答案為:3:2.15、5【解析】
作點A關于直線CD的對稱點E,作EP⊥AC于P,交CD于點Q,此時QA+QP最短,由QA+QP=QE+PQ=PE可知,求出PE即可解決問題.【詳解】解:作點A關于直線CD的對稱點E,作EP⊥AC于P,交CD于點Q.∵四邊形ABCD是矩形,∴∠ADC=90°,∴DQ⊥AE,∵DE=AD,∴QE=QA,∴QA+QP=QE+QP=EP,∴此時QA+QP最短(垂線段最短),∵∠CAB=30°,∴∠DAC=60°,在Rt△APE中,∵∠APE=90°,AE=2AD=10,∴EP=AE?sin60°=10×=5.故答案為5.【點睛】本題考查矩形的性質、最短問題、銳角三角函數等知識,解題的關鍵是利用對稱以及垂線段最短找到點P、Q的位置,屬于中考??碱}型.16、1.【解析】試題分析:直接把x=1代入已知方程就得到關于m的方程,再解此方程即可.試題解析:∵x=1是一元二次方程x1-1mx+4=0的一個解,∴4-4m+4=0,∴m=1.考點:一元二次方程的解.17、.【解析】
由正六邊形的性質得出AB=BC=AF,∠ABC=∠BAF=120°,由等腰三角形的性質得出∠ABF=∠BAC=∠BCA=30°,證出AG=BG,∠CBG=90°,由含30°角的直角三角形的性質得出CG=2BG=2AG,即可得出答案.【詳解】∵六邊形ABCDEF是正六邊形,∴AB=BC=AF,∠ABC=∠BAF=120°,∴∠ABF=∠BAC=∠BCA=30°,∴AG=BG,∠CBG=90°,∴CG=2BG=2AG,∴=;故答案為:.【點睛】本題考查了正六邊形的性質、等腰三角形的判定、含30°角的直角三角形的性質等知識;熟練掌握正六邊形的性質和含30°角的直角三角形的性質是解題的關鍵.18、2.4cm【解析】分析:根據圖2可判斷AC=3,BC=4,則可確定t=5時BP的值,利用sin∠B的值,可求出PD.詳解:由圖2可得,AC=3,BC=4,∴AB=.當t=5時,如圖所示:,此時AC+CP=5,故BP=AC+BC-AC-CP=2,∵sin∠B==,∴PD=BP·sin∠B=2×==1.2(cm).故答案是:1.2cm.點睛:本題考查了動點問題的函數圖象,勾股定理,銳角三角函數等知識,解答本題的關鍵是根據圖形得到AC、BC的長度,此題難度一般.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1);(2)詳見解析;(3)為定值,=【解析】
(1)把點B(4,0),點P(1,–3)代入y=ax2+c(a≠0),用待定系數法求解即可;(2)如圖作輔助線AE、BF垂直
x軸,設A(m,am2)、B(n,an2),由△AOE∽△OBF,可得到,然后表示出直線AB的解析式即可得到結論;(3)作PQ⊥AB于點Q,設P(m,am2+c)、A(–t,0)、B(t,0),則at2+c=0,c=–at2由PQ∥ON,可得ON=amt+at2,OM=–amt+at2,然后把ON,OM,OC的值代入整理即可.【詳解】(1)把點B(4,0),點P(1,–3)代入y=ax2+c(a≠0),,解之得,∴;(2)如圖作輔助線AE、BF垂直
x軸,設A(m,am2)、B(n,an2),∵OA⊥OB,∴∠AOE=∠OBF,∴△AOE∽△OBF,∴,,,直線AB過點A(m,am2)、點B(n,an2),∴過點(0,);(3)作PQ⊥AB于點Q,設P(m,am2+c)、A(–t,0)、B(t,0),則at2+c=0,c=–at2∵PQ∥ON,∴,ON=====at(m+t)=amt+at2,同理:OM=–amt+at2,所以,OM+ON=2at2=–2c=OC,所以,=.【點睛】本題考查了待定系數法求函數解析式,相似三角形的判定與性質,平行線分線段成比例定理.正確作出輔助線是解答本題的關鍵.20、(1)見解析;(2)m=2【解析】
(1)根據一元二次方程根的判別式進行分析解答即可;(2)用“因式分解法”解原方程,求得其兩根,再結合已知條件分析解答即可.【詳解】(1)∵在方程x2﹣6mx+9m2﹣9=1中,△=(﹣6m)2﹣4(9m2﹣9)=26m2﹣26m2+26=26>1.∴方程有兩個不相等的實數根;(2)關于x的方程:x2﹣6mx+9m2﹣9=1可化為:[x﹣(2m+2)][x﹣(2m﹣2)]=1,解得:x=2m+2和x=2m-2,∵2m+2>2m﹣2,x1>x2,∴x1=2m+2,x2=2m﹣2,又∵x1=2x2,∴2m+2=2(2m﹣2)解得:m=2.【點睛】(1)熟知“一元二次方程根的判別式:在一元二次方程中,當時,原方程有兩個不相等的實數根,當時,原方程有兩個相等的實數根,當時,原方程沒有實數根”是解答第1小題的關鍵;(2)能用“因式分解法”求得關于x的方程x2﹣6mx+9m2﹣9=1的兩個根是解答第2小題的關鍵.21、(1)25,150;(2)y甲=25x(0≤x≤20),;(3)x=14,150【解析】
解:(1)甲每分鐘生產=25只;提高生產速度之前乙的生產速度==15只/分,故乙在提高生產速度之前已生產了零件:15×10=150只;(2)結合后圖象可得:甲:y甲=25x(0≤x≤20);乙提速后的速度為50只/分,故乙生產完500只零件還需7分鐘,乙:y乙=15x(0≤x≤10),當10<x≤17時,設y乙=kx+b,把(10,150)、(17,500),代入可得:10k+b=150,17k+b=500,解得:k=50,b=?350,故y乙=50x?350(10≤x≤17).綜上可得:y甲=25x(0≤x≤20);;(3)令y甲=y乙,得25x=50x?350,解得:x=14,此時y甲=y乙=350只,故甲工人還有150只未生產.22、【解析】
根據分式的化簡方法先通分再約分,然后帶入求值.【詳解】解:當時,.【點睛】此題重點考查學生對分式的化簡的應用,掌握分式的化簡方法是解題的關鍵.23、(1)y=(1)(1,0)【解析】
(1)將點M的坐標代入一次函數解析式求得a的值;然后將點M的坐標代入反比例函數解析式,求得k的值即可;(1)根據平行四邊形的性質得到BC∥AD且BD=AD,結合圖形與坐標的性質求得點D的坐標.【詳解】解:(1)∵點M(a,4)在直線y=1x+1上,∴4=1a+1,解得a=1,∴M(1,4),將其代入y=得到:k=xy=1×4=4,∴反比例函數y=(x>0)的表達式為y=;(1)∵平面直角坐標系中,直線y=1x+1與x軸,y軸分別交于A,B兩點,∴當x=0時,y=1.當y=0時,x=﹣1,∴B(0,1),A(﹣1,0).∵BC∥AD,∴點C的縱坐標也等于1,且點C在反比例函數圖象上,將y=1代入y=,得1=,解得x=1,∴C(1,1).∵四邊形ABCD是平行四邊形,∴BC∥AD且BD=AD,由B(0,1),C(1,1)兩點的坐標知,BC∥AD.又BC=1,∴AD=1,∵A(﹣1,0),點D在點A的右側,∴點D的坐標是(1,0).【點睛】考查了反比例函數與一次函數交點問題.熟練掌握平行四邊形的性質和函數圖象上點的坐標特征是解決問題的關鍵,難度適中.24、燈桿AB的長度為2.3米.【解析】
過點A作AF⊥CE,交CE于點F,過點B作BG⊥AF,交AF于點G,則FG=BC=2.設AF=x知EF=AF=x、DF==,由DE=13.3求得x=11.4,據此知AG=AF﹣GF=1.4,再求得∠ABG=∠ABC﹣∠CBG=30°可得AB=2AG=2.3.【詳解】過點A作AF⊥CE,交CE于點F,過點B作BG⊥AF,交AF于點G,則FG=BC=2.由題意得:∠ADE=α,∠E=45°.設AF=x.∵∠E=45°,∴EF=AF=x.在Rt△ADF中,∵tan∠ADF=,∴DF==.∵DE=13.3,∴x+=13.3,∴x=11.4,∴AG=AF﹣GF=11.4﹣2=1.4.∵∠ABC=120°,∴∠ABG=∠ABC﹣∠CBG=120°﹣90°=30°,∴AB=2AG=2.3.答:燈桿AB的長度為2.3米.【點睛】本題主要考查解直角三角形﹣仰角俯角問題,解題的關鍵是結合題意構建直角三角形并熟練掌握三角函數的定義及其應用能力.25、(1),;(2)或.【解析】
(1)把點A坐標代入可求出m的值即可得反比例函數解析式;把點A、點C代入可求出k、b的值,即可得一次函數解析式;(2)聯立一次函數和反比例函數解析式可求出點B的坐標,根據圖象,求出一次函數圖象在反比例函數圖象的上方時,x的取值范圍即可.【詳解】(1)把代入得.∴反比例函數的表達式為把和代入得,解得∴一次函數的表達式為.(2)由得∴當或時,.【點睛】本題考查了一次函數和反比例函數的交點問題,解決問題的關鍵是掌握待定系數法求函數解析式.求反比例函數與一次函數的交點坐標時,把兩個函數關系式聯立成方程組求解,若方程組有解,則兩者有交點,若方程組無解,則兩者無交點.26、(1)a=;(2)①x=2;②拋物線的頂點的縱坐標為﹣a﹣2;(3)a的范圍為a<﹣2或a≥.【解析】
(1)把原點坐標代入y=ax2﹣4ax+3a﹣2即可求得a的值;(2)①②把拋物線解析式配成頂點式,即可得到拋物線的對稱軸和拋物線的頂點的縱坐標;(3)設A(m,1),B(n,1),利用拋物線與x軸的交點問題,則m、n為方程ax2﹣4ax+3a﹣2=1的兩根,利用判別式的意義解得a>1或a<﹣2,再利用根與系數的關系得到m+n=4,mn=,然后根據完全平方公式利用n﹣m≤4得到(m+n)2﹣4mn≤16,所以42﹣4?≤16,接著解關于a的不等式,最后確定a的范圍.【詳解】(1)把(1,1)代入y=ax2﹣4ax+3a﹣2得3a﹣2=1,解得a=;(2)①y=a(x﹣2)2﹣a﹣2,拋物線的對稱軸為直線x=2;②拋物線的頂點的縱坐標為﹣a﹣2;(3)設A(m,1),B(n,1),∵m、n為方程ax2﹣4ax+3a﹣2=1的兩根,∴△=16a2﹣4a(3a﹣2)>1,解得a>1或a<﹣2,∴m+n=4,mn=,而n﹣m≤4,∴(n﹣m)2≤16,即(m+n)2﹣4mn≤16,∴4
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 【正版授權】 IEC 62341-6-1:2025 CMV EN Organic light emitting diode (OLED) displays - Part 6-1: Measuring methods of optical and electro-optical parameters
- 雙極細胞外段的超微結構與感受器電位產生的課件
- 習慣養成教育主題班會
- 12月公共營養師基礎知識模擬題與答案(附解析)
- 小學學校消除大班額工作實施方案
- 派遣員工職業滿意度調查與反饋利用考核試卷
- 《催化裂化技術講座》課件
- 谷物磨制在特殊人群飲食中的應用考核試卷
- 《并串電路電流規律及例題課件》
- 制鞋業行業供應鏈管理考核試卷
- 生產安全質量培訓
- 復工協議書模板
- 數列-2020-2024年高考數學試題分類匯編(原卷版)
- 2025年部門預算支出經濟分類科目說明表
- 基于強磁吸附的履帶式爬壁機器人結構設計
- 《煤礦安全生產條例》知識培訓
- 外語系職業規劃
- 消防車道臨時支撐設計計算書
- DBJ-T 13-189-2024 福建省建筑材料及構配件檢測試驗文件管理標準
- 報紙購銷合同模板
- 酒吧消防合同范本
評論
0/150
提交評論