




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
黑龍江省哈爾濱市雙城區2022年中考猜題數學試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.關于x的不等式的解集為x>3,那么a的取值范圍為()A.a>3 B.a<3 C.a≥3 D.a≤32.如圖,一艘輪船位于燈塔P的北偏東60°方向,與燈塔P的距離為30海里的A處,輪船沿正南方向航行一段時間后,到達位于燈塔P的南偏東30°方向上的B處,則此時輪船所在位置B與燈塔P之間的距離為()A.60海里 B.45海里 C.20海里 D.30海里3.已知方程x2﹣x﹣2=0的兩個實數根為x1、x2,則代數式x1+x2+x1x2的值為()A.﹣3 B.1 C.3 D.﹣14.規定:如果關于x的一元二次方程ax2+bx+c=0(a≠0)有兩個實數根,且其中一個根是另一個根的2倍,則稱這樣的方程為“倍根方程”.現有下列結論:①方程x2+2x﹣8=0是倍根方程;②若關于x的方程x2+ax+2=0是倍根方程,則a=±3;③若關于x的方程ax2﹣6ax+c=0(a≠0)是倍根方程,則拋物線y=ax2﹣6ax+c與x軸的公共點的坐標是(2,0)和(4,0);④若點(m,n)在反比例函數y=的圖象上,則關于x的方程mx2+5x+n=0是倍根方程.上述結論中正確的有(
)A.①② B.③④ C.②③ D.②④5.若,代數式的值是A.0 B. C.2 D.6.如圖,BC平分∠ABE,AB∥CD,E是CD上一點,若∠C=35°,則∠BED的度數為()A.70° B.65° C.62° D.60°7.若x>y,則下列式子錯誤的是()A.x﹣3>y﹣3 B.﹣3x>﹣3y C.x+3>y+3 D.8.一、單選題二次函數的圖象如圖所示,對稱軸為x=1,給出下列結論:①abc<0;②b2>4ac;③4a+2b+c<0;④2a+b=0..其中正確的結論有:A.4個 B.3個 C.2個 D.1個9.如圖,已知射線OM,以O為圓心,任意長為半徑畫弧,與射線OM交于點A,再以點A為圓心,AO長為半徑畫弧,兩弧交于點B,畫射線OB,那么∠AOB的度數是()A.90° B.60° C.45° D.30°10.下列選項中,能使關于x的一元二次方程ax2﹣4x+c=0一定有實數根的是()A.a>0 B.a=0 C.c>0 D.c=011.如圖,正方形ABCD中,E,F分別在邊AD,CD上,AF,BE相交于點G,若AE=3ED,DF=CF,則的值是A. B. C. D.12.已知關于x的不等式3x﹣m+1>0的最小整數解為2,則實數m的取值范圍是()A.4≤m<7 B.4<m<7 C.4≤m≤7 D.4<m≤7二、填空題:(本大題共6個小題,每小題4分,共24分.)13.因式分解:x2y-4y3=________.14.將函數y=3x+1的圖象沿y軸向下平移2個單位長度,所得直線的函數表達式為_____.15.如圖,在△ABC中,∠ACB=90°,AC=BC=3,將△ABC折疊,使點A落在BC邊上的點D處,EF為折痕,若AE=2,則sin∠BFD的值為_____.16.若關于x的方程x2+x﹣a+=0有兩個不相等的實數根,則滿足條件的最小整數a的值是()A.﹣1 B.0 C.1 D.217.如圖,在平面直角坐標系中,已知點A(1,1),以點O為旋轉中心,將點A逆時針旋轉到點B的位置,則的長為_____.18.若一條直線經過點(1,1),則這條直線的解析式可以是(寫出一個即可)______.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)如圖,在△ABC中,∠ABC=90°,D,E分別為AB,AC的中點,延長DE到點F,使EF=2DE.(1)求證:四邊形BCFE是平行四邊形;(2)當∠ACB=60°時,求證:四邊形BCFE是菱形.20.(6分)為了計算湖中小島上涼亭P到岸邊公路l的距離,某數學興趣小組在公路l上的點A處,測得涼亭P在北偏東60°的方向上;從A處向正東方向行走200米,到達公路l上的點B處,再次測得涼亭P在北偏東45°的方向上,如圖所示.求涼亭P到公路l的距離.(結果保留整數,參考數據:≈1.414,≈1.732)21.(6分)如圖甲,直線y=﹣x+3與x軸、y軸分別交于點B、點C,經過B、C兩點的拋物線y=x2+bx+c與x軸的另一個交點為A,頂點為P.(1)求該拋物線的解析式;(2)在該拋物線的對稱軸上是否存在點M,使以C,P,M為頂點的三角形為等腰三角形?若存在,請直接寫出所符合條件的點M的坐標;若不存在,請說明理由;(3)當0<x<3時,在拋物線上求一點E,使△CBE的面積有最大值(圖乙、丙供畫圖探究).22.(8分)某商店在2014年至2016年期間銷售一種禮盒.2014年,該商店用3500元購進了這種禮盒并且全部售完;2016年,這種禮盒的進價比2014年下降了11元/盒,該商店用2400元購進了與2014年相同數量的禮盒也全部售完,禮盒的售價均為60元/盒.2014年這種禮盒的進價是多少元/盒?若該商店每年銷售這種禮盒所獲利潤的年增長率相同,問年增長率是多少?23.(8分)如圖,⊙O的半徑為4,B為⊙O外一點,連結OB,且OB=6.過點B作⊙O的切線BD,切點為點D,延長BO交⊙O于點A,過點A作切線BD的垂線,垂足為點C.(1)求證:AD平分∠BAC;(2)求AC的長.24.(10分)如圖,AB為⊙O的直徑,點D、E位于AB兩側的半圓上,射線DC切⊙O于點D,已知點E是半圓弧AB上的動點,點F是射線DC上的動點,連接DE、AE,DE與AB交于點P,再連接FP、FB,且∠AED=45°.求證:CD∥AB;填空:①當∠DAE=時,四邊形ADFP是菱形;②當∠DAE=時,四邊形BFDP是正方形.25.(10分)某商場計劃購進A,B兩種新型節能臺燈共100盞,A型燈每盞進價為30元,售價為45元;B型臺燈每盞進價為50元,售價為70元.(1)若商場預計進貨款為3500元,求A型、B型節能燈各購進多少盞?根據題意,先填寫下表,再完成本問解答:型號A型B型購進數量(盞)x_____購買費用(元)__________(2)若商場規定B型臺燈的進貨數量不超過A型臺燈數量的3倍,應怎樣進貨才能使商場在銷售完這批臺燈時獲利最多?此時利潤為多少元?26.(12分)我國古代數學著作《增刪算法統宗》記載“官兵分布”問題:“一千官軍一千布,一官四疋無零數,四軍才分布一疋,請問官軍多少數.”其大意為:今有1000官兵分1000匹布,1官分4匹,4兵分1匹.問官和兵各幾人?27.(12分)某商家預測一種應季襯衫能暢銷市場,就用13200元購進了一批這種襯衫,面市后果然供不應求.商家又用28800元購進了第二批這種襯衫,所購數量是第一批購進量的2倍,但單價貴了10元.該商家購進的第一批襯衫是多少件?若兩批襯衫按相同的標價銷售,最后剩下50件按八折優惠賣出,如果兩批襯衫全部售完后利潤率不低于25%(不考慮其它因素),那么每件襯衫的標價至少是多少元?
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、D【解析】分析:先解第一個不等式得到x>3,由于不等式組的解集為x>3,則利用同大取大可得到a的范圍.詳解:解不等式2(x-1)>4,得:x>3,解不等式a-x<0,得:x>a,∵不等式組的解集為x>3,∴a≤3,故選D.點睛:本題考查了解一元一次不等式組:解一元一次不等式組時,一般先求出其中各不等式的解集,再求出這些解集的公共部分,利用數軸可以直觀地表示不等式組的解集.解集的規律:同大取大;同小取小;大小小大中間找;大大小小找不到.2、D【解析】
根據題意得出:∠B=30°,AP=30海里,∠APB=90°,再利用勾股定理得出BP的長,求出答案.【詳解】解:由題意可得:∠B=30°,AP=30海里,∠APB=90°,故AB=2AP=60(海里),
則此時輪船所在位置B處與燈塔P之間的距離為:BP=(海里)故選:D.【點睛】此題主要考查了勾股定理的應用以及方向角,正確應用勾股定理是解題關鍵.3、D【解析】分析:根據一元二次方程根與系數的關系求出x1+x2和x1x2的值,然后代入x1+x2+x1x2計算即可.詳解:由題意得,a=1,b=-1,c=-2,∴,,∴x1+x2+x1x2=1+(-2)=-1.故選D.點睛:本題考查了一元二次方程ax2+bx+c=0(a≠0)根與系數的關系,若x1,x2為方程的兩個根,則x1,x2與系數的關系式:,.4、C【解析】分析:①通過解方程得到該方程的根,結合“倍根方程”的定義進行判斷;②設=2,得到?=2=2,得到當=1時,=2,當=-1時,=-2,于是得到結論;③根據“倍根方程”的定義即可得到結論;④若點(m,n)在反比例函數y=的圖象上,得到mn=4,然后解方程m+5x+n=0即可得到正確的結論;詳解:①由-2x-8=0,得:(x-4)(x+2)=0,解得=4,=-2,∵≠2,或≠2,∴方程-2x-8=0不是倍根方程;故①錯誤;②關于x的方程+ax+2=0是倍根方程,∴設=2,∴?=2=2,∴=±1,當=1時,=2,當=-1時,=-2,∴+=-a=±3,∴a=±3,故②正確;③關于x的方程a-6ax+c=0(a≠0)是倍根方程,∴=2,∵拋物線y=a-6ax+c的對稱軸是直線x=3,∴拋物線y=a-6ax+c與x軸的交點的坐標是(2,0)和(4,0),故③正確;④∵點(m,n)在反比例函數y=的圖象上,∴mn=4,解m+5x+n=0得=,=,∴=4,∴關于x的方程m+5x+n=0不是倍根方程;故選C.點睛:本題考查了反比例函數圖象上點的坐標特征,根與系數的關系,正確的理解倍根方程的定義是解題的關鍵.5、D【解析】
由可得,整體代入到原式即可得出答案.【詳解】解:,
,
則原式.
故選:D.【點睛】本題主要考查整式的化簡求值,熟練掌握整式的混合運算順序和法則及代數式的求值是解題的關鍵.6、A【解析】
由AB∥CD,根據兩直線平行,內錯角相等,即可求得∠ABC的度數,又由BC平分∠ABE,即可求得∠ABE的度數,繼而求得答案.【詳解】∵AB∥CD,∠C=35°,∴∠ABC=∠C=35°,∵BC平分∠ABE,∴∠ABE=2∠ABC=70°,∵AB∥CD,∴∠BED=∠ABE=70°.故選:A.【點睛】本題考查了平行線的性質,解題的關鍵是掌握平行線的性質進行解答.7、B【解析】根據不等式的性質在不等式兩邊加(或減)同一個數(或式子),不等號的方向不變;不等式兩邊乘(或除以)同一個正數,不等號的方向不變;不等式兩邊乘(或除以)同一個負數,不等號的方向改變即可得出答案:A、不等式兩邊都減3,不等號的方向不變,正確;B、乘以一個負數,不等號的方向改變,錯誤;C、不等式兩邊都加3,不等號的方向不變,正確;D、不等式兩邊都除以一個正數,不等號的方向不變,正確.故選B.8、B【解析】試題解析:①∵二次函數的圖象的開口向下,∴a<0,∵二次函數的圖象y軸的交點在y軸的正半軸上,∴c>0,∵二次函數圖象的對稱軸是直線x=1,∴2a+b=0,b>0∴abc<0,故正確;②∵拋物線與x軸有兩個交點,故正確;③∵二次函數圖象的對稱軸是直線x=1,∴拋物線上x=0時的點與當x=2時的點對稱,即當x=2時,y>0∴4a+2b+c>0,故錯誤;④∵二次函數圖象的對稱軸是直線x=1,∴2a+b=0,故正確.綜上所述,正確的結論有3個.故選B.9、B【解析】
首先連接AB,由題意易證得△AOB是等邊三角形,根據等邊三角形的性質,可求得∠AOB的度數.【詳解】連接AB,根據題意得:OB=OA=AB,∴△AOB是等邊三角形,∴∠AOB=60°.故答案選:B.【點睛】本題考查了等邊三角形的判定與性質,解題的關鍵是熟練的掌握等邊三角形的判定與性質.10、D【解析】試題分析:根據題意得a≠1且△=,解得且a≠1.觀察四個答案,只有c=1一定滿足條件,故選D.考點:根的判別式;一元二次方程的定義.11、C【解析】
如圖作,FN∥AD,交AB于N,交BE于M.設DE=a,則AE=3a,利用平行線分線段成比例定理解決問題即可.【詳解】如圖作,FN∥AD,交AB于N,交BE于M.∵四邊形ABCD是正方形,∴AB∥CD,∵FN∥AD,∴四邊形ANFD是平行四邊形,∵∠D=90°,∴四邊形ANFD是矩形,∵AE=3DE,設DE=a,則AE=3a,AD=AB=CD=FN=4a,AN=DF=2a,∵AN=BN,MN∥AE,∴BM=ME,∴MN=a,∴FM=a,∵AE∥FM,∴,故選C.【點睛】本題考查正方形的性質、平行線分線段成比例定理、三角形中位線定理等知識,解題的關鍵是學會添加常用輔助線,構造平行線解決問題,學會利用參數解決問題,屬于中考常考題型.12、A【解析】
先解出不等式,然后根據最小整數解為2得出關于m的不等式組,解之即可求得m的取值范圍.【詳解】解:解不等式3x﹣m+1>0,得:x>,∵不等式有最小整數解2,∴1≤<2,解得:4≤m<7,故選A.【點睛】本題考查了一元一次不等式的整數解,解一元一次不等式組,正確解不等式,熟練掌握一元一次不等式、一元一次不等式組的解法是解答本題的關鍵.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、y(x++2y)(x-2y)【解析】
首先提公因式,再利用平方差進行分解即可.【詳解】原式.故答案是:y(x+2y)(x-2y).【點睛】考查了提公因式法與公式法分解因式,要求靈活使用各種方法對多項式進行因式分解,一般來說,如果可以先提取公因式的要先提取公因式,再考慮運用公式法分解.14、y=3x-1【解析】∵y=3x+1的圖象沿y軸向下平移2個單位長度,∴平移后所得圖象對應的函數關系式為:y=3x+1﹣2,即y=3x﹣1.故答案為y=3x﹣1.15、【解析】分析:過點D作DGAB于點G.根據折疊性質,可得AE=DE=2,AF=DF,CE=1,在Rt△DCE中,由勾股定理求得,所以DB=;在Rt△ABC中,由勾股定理得;在Rt△DGB中,由銳角三角函數求得,;設AF=DF=x,則FG=,在Rt△DFG中,根據勾股定理得方程=,解得,從而求得.的值詳解:如圖所示,過點D作DGAB于點G.根據折疊性質,可知△AEF△DEF,∴AE=DE=2,AF=DF,CE=AC-AE=1,在Rt△DCE中,由勾股定理得,∴DB=;在Rt△ABC中,由勾股定理得;在Rt△DGB中,,;設AF=DF=x,得FG=AB-AF-GB=,在Rt△DFG中,,即=,解得,∴==.故答案為.點睛:主要考查了翻折變換的性質、勾股定理、銳角三件函數的定義;解題的關鍵是靈活運用折疊的性質、勾股定理、銳角三角函數的定義等知識來解決問題.16、D【解析】
根據根的判別式得到關于a的方程,求解后可得到答案.【詳解】關于x的方程有兩個不相等的實數根,則解得:滿足條件的最小整數的值為2.故選D.【點睛】本題考查了一元二次方程根與系數的關系,理解并能運用根的判別式得出方程是解題關鍵.17、.【解析】
由點A(1,1),可得OA的長,點A在第一象限的角平分線上,可得∠AOB=45°,,再根據弧長公式計算即可.【詳解】∵A(1,1),∴OA=,點A在第一象限的角平分線上,∵以點O為旋轉中心,將點A逆時針旋轉到點B的位置,∴∠AOB=45°,∴的長為=,故答案為:.【點睛】本題考查坐標與圖形變化——旋轉,弧長公式,熟練掌握旋轉的性質以及弧長公式是解題的關鍵.本題中求出OA=以及∠AOB=45°也是解題的關鍵.18、y=x.(答案不唯一)【解析】
首先設一次函數解析式為:y=kx+b(k≠0),b取任意值后,把(1,1)代入所設的解析式里,即可得到k的值,進而得到答案.【詳解】解:設直線的解析式y=kx+b,令b=0,將(1,1)代入,得k=1,此時解析式為:y=x.由于b可為任意值,故答案不唯一.故答案為:y=x.(答案不唯一)【點睛】本題考查了待定系數法求一次函數解析式.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)見解析;(2)見解析【解析】
(1)由題意易得,EF與BC平行且相等,利用四邊形BCFE是平行四邊形.(2)根據菱形的判定證明即可.【詳解】(1)證明::∵D.E為AB,AC中點∴DE為△ABC的中位線,DE=BC,∴DE∥BC,即EF∥BC,∵EF=BC,∴四邊形BCEF為平行四邊形.(2)∵四邊形BCEF為平行四邊形,∵∠ACB=60°,∴BC=CE=BE,∴四邊形BCFE是菱形.【點睛】本題考查平行四邊形的判定和性質、菱形的判定、等邊三角形的判定和性質等知識,解題的關鍵是靈活運用所學知識解決問題,屬于中考常考題型.20、涼亭P到公路l的距離為273.2m.【解析】
分析:作PD⊥AB于D,構造出Rt△APD與Rt△BPD,根據AB的長度.利用特殊角的三角函數值求解.【詳解】詳解:作PD⊥AB于D.設BD=x,則AD=x+1.∵∠EAP=60°,∴∠PAB=90°﹣60°=30°.在Rt△BPD中,∵∠FBP=45°,∴∠PBD=∠BPD=45°,∴PD=DB=x.在Rt△APD中,∵∠PAB=30°,∴PD=tan30°?AD,即DB=PD=tan30°?AD=x=(1+x),解得:x≈273.2,∴PD=273.2.答:涼亭P到公路l的距離為273.2m.【點睛】此題考查的是直角三角形的性質,解答此題的關鍵是構造出兩個特殊角度的直角三角形,再利用特殊角的三角函數值解答.21、(1)y=x2﹣4x+3;(2)(2,)或(2,7)或(2,﹣1+2)或(2,﹣1﹣2);(3)E點坐標為(,)時,△CBE的面積最大.【解析】試題分析:(1)由直線解析式可求得B、C坐標,利用待定系數法可求得拋物線解析式;(2)由拋物線解析式可求得P點坐標及對稱軸,可設出M點坐標,表示出MC、MP和PC的長,分MC=MP、MC=PC和MP=PC三種情況,可分別得到關于M點坐標的方程,可求得M點的坐標;(3)過E作EF⊥x軸,交直線BC于點F,交x軸于點D,可設出E點坐標,表示出F點的坐標,表示出EF的長,進一步可表示出△CBE的面積,利用二次函數的性質可求得其取得最大值時E點的坐標.試題解析:(1)∵直線y=﹣x+3與x軸、y軸分別交于點B、點C,∴B(3,0),C(0,3),把B、C坐標代入拋物線解析式可得,解得,∴拋物線解析式為y=x2﹣4x+3;(2)∵y=x2﹣4x+3=(x﹣2)2﹣1,∴拋物線對稱軸為x=2,P(2,﹣1),設M(2,t),且C(0,3),∴MC=,MP=|t+1|,PC=,∵△CPM為等腰三角形,∴有MC=MP、MC=PC和MP=PC三種情況,①當MC=MP時,則有=|t+1|,解得t=,此時M(2,);②當MC=PC時,則有=2,解得t=﹣1(與P點重合,舍去)或t=7,此時M(2,7);③當MP=PC時,則有|t+1|=2,解得t=﹣1+2或t=﹣1﹣2,此時M(2,﹣1+2)或(2,﹣1﹣2);綜上可知存在滿足條件的點M,其坐標為(2,)或(2,7)或(2,﹣1+2)或(2,﹣1﹣2);(3)如圖,過E作EF⊥x軸,交BC于點F,交x軸于點D,設E(x,x2﹣4x+3),則F(x,﹣x+3),∵0<x<3,∴EF=﹣x+3﹣(x2﹣4x+3)=﹣x2+3x,∴S△CBE=S△EFC+S△EFB=EF?OD+EF?BD=EF?OB=×3(﹣x2+3x)=﹣(x﹣)2+,∴當x=時,△CBE的面積最大,此時E點坐標為(,),即當E點坐標為(,)時,△CBE的面積最大.考點:二次函數綜合題.22、(1)35元/盒;(2)20%.【解析】
試題分析:(1)設2014年這種禮盒的進價為x元/盒,則2016年這種禮盒的進價為(x﹣11)元/盒,根據2014年花3500元與2016年花2400元購進的禮盒數量相同,即可得出關于x的分式方程,解之經檢驗后即可得出結論;(2)設年增長率為m,根據數量=總價÷單價求出2014年的購進數量,再根據2014年的銷售利潤×(1+增長率)2=2016年的銷售利潤,即可得出關于m的一元二次方程,解之即可得出結論.試題解析:(1)設2014年這種禮盒的進價為x元/盒,則2016年這種禮盒的進價為(x﹣11)元/盒,根據題意得:,解得:x=35,經檢驗,x=35是原方程的解.答:2014年這種禮盒的進價是35元/盒.(2)設年增長率為m,2014年的銷售數量為3500÷35=100(盒).根據題意得:(60﹣35)×100(1+a)2=(60﹣35+11)×100,解得:a=0.2=20%或a=﹣2.2(不合題意,舍去).答:年增長率為20%.考點:一元二次方程的應用;分式方程的應用;增長率問題.23、(1)證明見解析;(2)AC=.【解析】(1)證明:連接OD.∵BD是⊙O的切線,∴OD⊥BD.∵AC⊥BD,∴OD∥AC,∴∠2=∠1.∵OA=OD.∴∠1=∠1,∴∠1=∠2,即AD平分∠BAC.(2)解:∵OD∥AC,∴△BOD∽△BAC,∴,即.解得.24、(1)詳見解析;(2)①67.5°;②90°.【解析】
(1)要證明CD∥AB,只要證明∠ODF=∠AOD即可,根據題目中的條件可以證明∠ODF=∠AOD,從而可以解答本題;(2)①根據四邊形ADFP是菱形和菱形的性質,可以求得∠DAE的度數;②根據四邊形BFDP是正方形,可以求得∠DAE的度數.【詳解】(1)證明:連接OD,如圖所示,∵射線DC切⊙O于點D,∴OD⊥CD,即∠ODF=90°,∵∠AED=45°,∴∠AOD=2∠AED=90°,∴∠ODF=∠AOD,∴CD∥AB;(2)①連接AF與DP交于點G,如圖所示,∵四邊形ADFP是菱形,∠AED=45°,OA=OD,∴AF⊥DP,∠AOD=90°,∠DAG=∠PAG,∴∠AGE=90°,∠DAO=45°,∴∠EAG=45°,∠DAG=∠PEG=22.5°,∴∠EAD=∠DAG+∠EAG=22.5°+45°=67.5°,故答案為:67.5°;②∵四邊形BFDP是正方形,∴BF=FD=DP=PB,∠DPB=∠PBF=∠BFD=∠FDP=90°,∴此時點P與點O重合,∴此時DE是直徑,∴∠EAD=90°,故答案為:90°.【點睛】本題考查菱形的判定與性質、切線的性質、正方形的判定,解答本題的關鍵是明確題意,找出所求問題需要的條件,利用菱
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 蘭州工業學院《管理統計學實驗》2023-2024學年第二學期期末試卷
- 五邑大學《幼兒園級管理》2023-2024學年第二學期期末試卷
- 云南中醫藥大學《醫學文獻檢索3》2023-2024學年第二學期期末試卷
- 貴州輕工職業技術學院《中國社會經濟史》2023-2024學年第二學期期末試卷
- 商丘學院《美術基礎(Ⅰ)》2023-2024學年第二學期期末試卷
- 西安工商學院《技術經濟學B》2023-2024學年第二學期期末試卷
- 西安財經大學行知學院《傳統體育》2023-2024學年第二學期期末試卷
- 山東協和學院《中西醫結合耳鼻咽喉科學》2023-2024學年第二學期期末試卷
- 桐城師范高等專科學校《家庭教育專題》2023-2024學年第二學期期末試卷
- 合肥學院《中學歷史教學專題》2023-2024學年第二學期期末試卷
- 2025汾西礦業井下操作技能人員招聘300人(山西)筆試參考題庫附帶答案詳解
- 《骨關節炎與藥物治療》課件
- 醫療機構重大事故隱患判定清單解讀課件
- 2025年全國中小學生科普知識競賽題庫附答案(共280題)
- 2024年四川省成都市中考生物試卷(含答案與解析)
- 2025抖音財經內容生態報告
- 2025重慶理工職業學院輔導員考試題庫
- 跌倒墜床的評估及預防
- 2024北京朝陽區高一(下)期末物理試題和答案
- 麻將智力考試試題及答案
- 軌行區安全注意事項
評論
0/150
提交評論