2021-2022學年陜西省山陽縣中考數學四模試卷含解析_第1頁
2021-2022學年陜西省山陽縣中考數學四模試卷含解析_第2頁
2021-2022學年陜西省山陽縣中考數學四模試卷含解析_第3頁
2021-2022學年陜西省山陽縣中考數學四模試卷含解析_第4頁
2021-2022學年陜西省山陽縣中考數學四模試卷含解析_第5頁
已閱讀5頁,還剩20頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2021-2022學年陜西省山陽縣中考數學四模試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監考員收回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.下列各式中,計算正確的是()A. B.C. D.2.如圖,一圓弧過方格的格點A、B、C,在方格中建立平面直角坐標系,使點A的坐標為(﹣3,2),則該圓弧所在圓心坐標是()A.(0,0) B.(﹣2,1) C.(﹣2,﹣1) D.(0,﹣1)3.點P(4,﹣3)關于原點對稱的點所在的象限是()A.第四象限 B.第三象限 C.第二象限 D.第一象限4.如圖,直線a∥b,直線分別交a,b于點A,C,∠BAC的平分線交直線b于點D,若∠1=50°,則∠2的度數是A.50° B.70° C.80° D.110°5.如圖1,在矩形ABCD中,動點E從A出發,沿A→B→C方向運動,當點E到達點C時停止運動,過點E作EF⊥AE交CD于點F,設點E運動路程為x,CF=y,如圖2所表示的是y與x的函數關系的大致圖象,給出下列結論:①a=3;②當CF=時,點E的運動路程為或或,則下列判斷正確的是()A.①②都對 B.①②都錯 C.①對②錯 D.①錯②對6.若x,y的值均擴大為原來的3倍,則下列分式的值保持不變的是()A. B. C. D.7.化簡的結果是()A. B. C. D.8.老師在微信群發了這樣一個圖:以線段AB為邊作正五邊形ABCDE和正三角形ABG,連接AC、DG,交點為F,下列四位同學的說法不正確的是()A.甲 B.乙 C.丙 D.丁9.如圖,的三邊的長分別為20,30,40,點O是三條角平分線的交點,則等于()A.1∶1∶1 B.1∶2∶3 C.2∶3∶4 D.3∶4∶510.若二次函數y=ax2+bx+c的x與y的部分對應值如下表:x﹣2﹣1012y830﹣10則拋物線的頂點坐標是()A.(﹣1,3) B.(0,0) C.(1,﹣1) D.(2,0)11.如圖,?ABCD的對角線AC,BD相交于點O,E是AB中點,且AE+EO=4,則?ABCD的周長為()A.20B.16C.12D.812.下列計算正確的是()A.a3?a2=a6 B.(a3)2=a5 C.(ab2)3=ab6 D.a+2a=3a二、填空題:(本大題共6個小題,每小題4分,共24分.)13.尺規作圖:過直線外一點作已知直線的平行線.已知:如圖,直線l與直線l外一點P.求作:過點P與直線l平行的直線.作法如下:(1)在直線l上任取兩點A、B,連接AP、BP;(2)以點B為圓心,AP長為半徑作弧,以點P為圓心,AB長為半徑作弧,如圖所示,兩弧相交于點M;(3)過點P、M作直線;(4)直線PM即為所求.請回答:PM平行于l的依據是_____.14.如圖是一張長方形紙片ABCD,已知AB=8,AD=7,E為AB上一點,AE=5,現要剪下一張等腰三角形紙片(△AEP),使點P落在長方形ABCD的某一條邊上,則等腰三角形AEP的底邊長是_____________.15.已知a2+a=1,則代數式3﹣a﹣a2的值為_____.16.關于x的一元二次方程x2+4x﹣k=0有實數根,則k的取值范圍是__________.17.如圖,當半徑為30cm的轉動輪轉過120角時,傳送帶上的物體A平移的距離為______cm.18.如圖,已知圓O的半徑為2,A是圓上一定點,B是OA的中點,E是圓上一動點,以BE為邊作正方形BEFG(B、E、F、G四點按逆時針順序排列),當點E繞⊙O圓周旋轉時,點F的運動軌跡是_________圖形三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)某市旅游景區有A、B、C、D、E等著名景點,該市旅游部門統計繪制出2018年春節期間旅游情況統計圖(如圖),根據圖中信息解答下列問題:(1)2018年春節期間,該市A、B、C、D、E這五個景點共接待游客人數為多少?(2)扇形統計圖中E景點所對應的圓心角的度數是,并補全條形統計圖.(3)甲,乙兩個旅行團在A、B、D三個景點中隨機選擇一個,求這兩個旅行團選中同一景點的概率.20.(6分)如圖,在ABCD中,點E是AB邊的中點,DE與CB的延長線交于點F.求證:△ADE≌△BFE;若DF平分∠ADC,連接CE.試判斷CE和DF的位置關系,并說明理由.21.(6分)觀察下列等式:22﹣2×1=12+1①32﹣2×2=22+1②42﹣2×3=32+1③…第④個等式為;根據上面等式的規律,猜想第n個等式(用含n的式子表示,n是正整數),并說明你猜想的等式正確性.22.(8分)某景區商店銷售一種紀念品,每件的進貨價為40元.經市場調研,當該紀念品每件的銷售價為50元時,每天可銷售200件;當每件的銷售價每增加1元,每天的銷售數量將減少10件.當每件的銷售價為52元時,該紀念品每天的銷售數量為件;當每件的銷售價x為多少時,銷售該紀念品每天獲得的利潤y最大?并求出最大利潤.23.(8分)近年來,共享單車服務的推出(如圖1),極大的方便了城市公民綠色出行,圖2是某品牌某型號單車的車架新投放時的示意圖(車輪半徑約為30cm),其中BC∥直線l,∠BCE=71°,CE=54cm.(1)求單車車座E到地面的高度;(結果精確到1cm)(2)根據經驗,當車座E到CB的距離調整至等于人體胯高(腿長)的0.85時,坐騎比較舒適.小明的胯高為70cm,現將車座E調整至座椅舒適高度位置E′,求EE′的長.(結果精確到0.1cm)(參考數據:sin71°≈0.95,cos71°≈0.33,tan71°≈2.90)24.(10分)如圖,已知,等腰Rt△OAB中,∠AOB=90°,等腰Rt△EOF中,∠EOF=90°,連結AE、BF.求證:(1)AE=BF;(2)AE⊥BF.25.(10分)如圖(1),已知點G在正方形ABCD的對角線AC上,GE⊥BC,垂足為點E,GF⊥CD,垂足為點F.(1)證明與推斷:①求證:四邊形CEGF是正方形;②推斷:的值為:(2)探究與證明:將正方形CEGF繞點C順時針方向旋轉α角(0°<α<45°),如圖(2)所示,試探究線段AG與BE之間的數量關系,并說明理由:(3)拓展與運用:正方形CEGF在旋轉過程中,當B,E,F三點在一條直線上時,如圖(3)所示,延長CG交AD于點H.若AG=6,GH=2,則BC=.26.(12分)如圖1,點O是正方形ABCD兩對角線的交點,分別延長OD到點G,OC到點E,使OG=1OD,OE=1OC,然后以OG、OE為鄰邊作正方形OEFG,連接AG,DE.(1)求證:DE⊥AG;(1)正方形ABCD固定,將正方形OEFG繞點O逆時針旋轉α角(0°<α<360°)得到正方形OE′F′G′,如圖1.①在旋轉過程中,當∠OAG′是直角時,求α的度數;②若正方形ABCD的邊長為1,在旋轉過程中,求AF′長的最大值和此時α的度數,直接寫出結果不必說明理由.27.(12分)“校園安全”受到全社會的廣泛關注,某中學對部分學生就校園安全知識的了解程度,采用隨機抽樣調查的方式,并根據收集到的信息進行統計,繪制了下面兩幅尚不完整的統計圖,請根據統計圖中所提供的信息解答下列問題:接受問卷調查的學生共有人,扇形統計圖中“基本了解”部分所對應扇形的圓心角為度;請補全條形統計圖;若該中學共有學生900人,請根據上述調查結果,估計該中學學生中對校園安全知識達到“了解”和“基本了解”程度的總人數.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、C【解析】

接利用合并同類項法則以及積的乘方運算法則、同底數冪的乘除運算法則分別計算得出答案.【詳解】A、無法計算,故此選項錯誤;B、a2?a3=a5,故此選項錯誤;C、a3÷a2=a,正確;D、(a2b)2=a4b2,故此選項錯誤.故選C.【點睛】此題主要考查了合并同類項以及積的乘方運算、同底數冪的乘除運算,正確掌握相關運算法則是解題關鍵.2、C【解析】如圖:分別作AC與AB的垂直平分線,相交于點O,則點O即是該圓弧所在圓的圓心.∵點A的坐標為(﹣3,2),∴點O的坐標為(﹣2,﹣1).故選C.3、C【解析】

由題意得點P的坐標為(﹣4,3),根據象限內點的符號特點可得點P1的所在象限.【詳解】∵設P(4,﹣3)關于原點的對稱點是點P1,∴點P1的坐標為(﹣4,3),∴點P1在第二象限.故選C【點睛】本題主要考查了兩點關于原點對稱,這兩點的橫縱坐標均互為相反數;符號為(﹣,+)的點在第二象限.4、C【解析】

根據平行線的性質可得∠BAD=∠1,再根據AD是∠BAC的平分線,進而可得∠BAC的度數,再根據補角定義可得答案.【詳解】因為a∥b,所以∠1=∠BAD=50°,因為AD是∠BAC的平分線,所以∠BAC=2∠BAD=100°,所以∠2=180°-∠BAC=180°-100°=80°.故本題正確答案為C.【點睛】本題考查的知識點是平行線的性質,解題關鍵是掌握兩直線平行,內錯角相等.5、A【解析】

由已知,AB=a,AB+BC=5,當E在BC上時,如圖,可得△ABE∽△ECF,繼而根據相似三角形的性質可得y=﹣,根據二次函數的性質可得﹣,由此可得a=3,繼而可得y=﹣,把y=代入解方程可求得x1=,x2=,由此可求得當E在AB上時,y=時,x=,據此即可作出判斷.【詳解】解:由已知,AB=a,AB+BC=5,當E在BC上時,如圖,∵E作EF⊥AE,∴△ABE∽△ECF,∴,∴,∴y=﹣,∴當x=時,﹣,解得a1=3,a2=(舍去),∴y=﹣,當y=時,=﹣,解得x1=,x2=,當E在AB上時,y=時,x=3﹣=,故①②正確,故選A.【點睛】本題考查了二次函數的應用,相似三角形的判定與性質,綜合性較強,弄清題意,正確畫出符合條件的圖形,熟練運用二次函數的性質以及相似三角形的判定與性質是解題的關鍵.6、D【解析】

根據分式的基本性質,x,y的值均擴大為原來的3倍,求出每個式子的結果,看結果等于原式的即是答案.【詳解】根據分式的基本性質,可知若x,y的值均擴大為原來的3倍,A、,錯誤;B、,錯誤;C、,錯誤;D、,正確;故選D.【點睛】本題考查的是分式的基本性質,即分子分母同乘以一個不為0的數,分式的值不變.此題比較簡單,但計算時一定要細心.7、D【解析】

將除法變為乘法,化簡二次根式,再用乘法分配律展開計算即可.【詳解】原式=×=×(+1)=2+.故選D.【點睛】本題主要考查二次根式的加減乘除混合運算,掌握二次根式的混合運算法則是解題關鍵.8、B【解析】

利用對稱性可知直線DG是正五邊形ABCDE和正三角形ABG的對稱軸,再利用正五邊形、等邊三角形的性質一一判斷即可;【詳解】∵五邊形ABCDE是正五邊形,△ABG是等邊三角形,∴直線DG是正五邊形ABCDE和正三角形ABG的對稱軸,∴DG垂直平分線段AB,∵∠BCD=∠BAE=∠EDC=108°,∴∠BCA=∠BAC=36°,∴∠DCA=72°,∴∠CDE+∠DCA=180°,∴DE∥AC,∴∠CDF=∠EDF=∠CFD=72°,∴△CDF是等腰三角形.故丁、甲、丙正確.故選B.【點睛】本題考查正多邊形的性質、等邊三角形的性質、軸對稱圖形的性質等知識,解題的關鍵是靈活運用所學知識解決問題,屬于中考常考題型.9、C【解析】

作OF⊥AB于F,OE⊥AC于E,OD⊥BC于D,根據角平分線的性質得到OD=OE=OF,根據三角形的面積公式計算即可.【詳解】作OF⊥AB于F,OE⊥AC于E,OD⊥BC于D,

∵三條角平分線交于點O,OF⊥AB,OE⊥AC,OD⊥BC,

∴OD=OE=OF,

∴S△ABO:S△BCO:S△CAO=AB:BC:CA=20:30:40=2:3:4,

故選C.【點睛】考查的是角平分線的性質,掌握角的平分線上的點到角的兩邊的距離相等是解題的關鍵.10、C【解析】分析:由表中所給數據,可求得二次函數解析式,則可求得其頂點坐標.詳解:當或時,,當時,,,解得,二次函數解析式為,拋物線的頂點坐標為,故選C.點睛:本題主要考查二次函數的性質,利用條件求得二次函數的解析式是解題的關鍵.11、B【解析】

首先證明:OE=12【詳解】∵四邊形ABCD是平行四邊形,∴OA=OC,∵AE=EB,∴OE=12∵AE+EO=4,∴2AE+2EO=8,∴AB+BC=8,∴平行四邊形ABCD的周長=2×8=16,故選:B.【點睛】本題考查平行四邊形的性質、三角形的中位線定理等知識,解題的關鍵是熟練掌握三角形的中位線定理,屬于中考常考題型.12、D【解析】

根據同底數冪的乘法、積的乘方與冪的乘方及合并同類項的運算法則進行計算即可得出正確答案.【詳解】解:A.x4?x4=x4+4=x8≠x16,故該選項錯誤;B.(a3)2=a3×2=a6≠a5,故該選項錯誤;C.(ab2)3=a3b6≠ab6,故該選項錯誤;D.a+2a=(1+2)a=3a,故該選項正確;故選D.考點:1.同底數冪的乘法;2.積的乘方與冪的乘方;3.合并同類項.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、兩組對邊分別相等的四邊形是平行四邊形;平行四邊形對邊平行;兩點確定一條直線.【解析】

利用畫法得到PM=AB,BM=PA,則利用平行四邊形的判定方法判斷四邊形ABMP為平行四邊形,然后根據2平行四邊形的性質得到PM∥AB.【詳解】解:由作法得PM=AB,BM=PA,∴四邊形ABMP為平行四邊形,∴PM∥AB.故答案為:兩組對邊分別相等的四邊形是平行四邊形;平行四邊形對邊平行;兩點確定一條直線.【點睛】本題考查基本作圖:熟練掌握基本作圖(作一條線段等于已知線段;作一個角等于已知角;作已知線段的垂直平分線;作已知角的角平分線;過一點作已知直線的垂線).也考查了平行四邊形的判定與性質.14、或或1【解析】

如圖所示:①當AP=AE=1時,∵∠BAD=90°,∴△AEP是等腰直角三角形,∴底邊PE=AE=;②當PE=AE=1時,∵BE=AB﹣AE=8﹣1=3,∠B=90°,∴PB==4,∴底邊AP===;③當PA=PE時,底邊AE=1;綜上所述:等腰三角形AEP的對邊長為或或1;故答案為或或1.15、2【解析】∵,∴,故答案為2.16、k≥﹣1【解析】分析:根據方程的系數結合根的判別式△≥0,即可得出關于k的一元一次不等式,解之即可得出結論.詳解:∵關于x的一元二次方程x2+1x-k=0有實數根,∴△=12-1×1×(-k)=16+1k≥0,解得:k≥-1.故答案為k≥-1.點睛:本題考查了根的判別式,牢記“當△≥0時,方程有實數根”是解題的關鍵.17、20π【解析】解:=20πcm.故答案為20πcm.18、圓【解析】

根據題意作圖,即可得到點F的運動軌跡.【詳解】如圖,根據題意作下圖,可知F的運動軌跡為圓⊙O’.【點睛】此題主要考查動點的作圖問題,解題的關鍵是根據題意作出相應的圖形,方可判斷.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)50萬人;(2)43.2°;統計圖見解析(3).【解析】

(1)根據A景點的人數以及百分比進行計算即可得到該市景點共接待游客數;(2)先用360°乘以E的百分比求得E景點所對應的圓心角的度數,再根據B、D景點接待游客數補全條形統計圖;(3)根據甲、乙兩個旅行團在A、B、D三個景點中各選擇一個景點,畫出樹狀圖,根據概率公式進行計算,即可得到同時選擇去同一景點的概率.【詳解】解:(1)該市景點共接待游客數為:15÷30%=50(萬人);(2)扇形統計圖中E景點所對應的圓心角的度數是:×360°=43.2°,B景點的人數為50×24%=12(萬人)、D景點的人數為50×18%=9(萬人),補全條形統計圖如下:故答案為43.2°;(3)畫樹狀圖可得:∵共有9種可能出現的結果,這些結果出現的可能性相等,其中同時選擇去同一個景點的結果有3種,∴P(同時選擇去同一個景點)【點睛】本題考查的是統計以及用列表法或畫樹狀圖法求概率.列表法或畫樹狀圖法可以不重復不遺漏的列出所有可能的結果,列表法適合于兩步完成的事件,樹狀圖法適合兩步或兩步以上完成的事件;注意概率=所求情況數與總情況數之比.20、(1)見解析;(1)見解析.【解析】

(1)由全等三角形的判定定理AAS證得結論.(1)由(1)中全等三角形的對應邊相等推知點E是邊DF的中點,∠1=∠1;根據角平分線的性質、等量代換以及等角對等邊證得DC=FC,則由等腰三角形的“三合一”的性質推知CE⊥DF.【詳解】解:(1)證明:如圖,∵四邊形ABCD是平行四邊形,∴AD∥BC.又∵點F在CB的延長線上,∴AD∥CF.∴∠1=∠1.∵點E是AB邊的中點,∴AE=BE,∵在△ADE與△BFE中,,∴△ADE≌△BFE(AAS).(1)CE⊥DF.理由如下:如圖,連接CE,由(1)知,△ADE≌△BFE,∴DE=FE,即點E是DF的中點,∠1=∠1.∵DF平分∠ADC,∴∠1=∠2.∴∠2=∠1.∴CD=CF.∴CE⊥DF.21、(1)52﹣2×4=42+1;(2)(n+1)2﹣2n=n2+1,證明詳見解析.【解析】

(1)根據①②③的規律即可得出第④個等式;(2)第n個等式為(n+1)2﹣2n=n2+1,把等式左邊的完全平方公式展開后再合并同類項即可得出右邊.【詳解】(1)∵22﹣2×1=12+1①32﹣2×2=22+1②42﹣2×3=32+1③∴第④個等式為52﹣2×4=42+1,故答案為:52﹣2×4=42+1,(2)第n個等式為(n+1)2﹣2n=n2+1.(n+1)2﹣2n=n2+2n+1﹣2n=n2+1.【點睛】本題主要考查了整式的運算,熟練掌握完全平方公式是解答本題的關鍵.22、(1)180;(2)每件銷售價為55元時,獲得最大利潤;最大利潤為2250元.【解析】分析:(1)根據“當每件的銷售價每增加1元,每天的銷售數量將減少10件”,即可解答;(2)根據等量關系“利潤=(售價﹣進價)×銷量”列出函數關系式,根據二次函數的性質,即可解答.詳解:(1)由題意得:200﹣10×(52﹣50)=200﹣20=180(件),故答案為180;(2)由題意得:y=(x﹣40)[200﹣10(x﹣50)]=﹣10x2+1100x﹣28000=﹣10(x﹣55)2+2250∴每件銷售價為55元時,獲得最大利潤;最大利潤為2250元.點睛:此題主要考查了二次函數的應用,根據已知得出二次函數的最值是中考中考查重點,同學們應重點掌握.23、(1)81cm;(2)8.6cm;【解析】

(1)作EM⊥BC于點M,由EM=ECsin∠BCE可得答案;(2)作E′H⊥BC于點H,先根據E′C=求得E′C的長度,再根據EE′=CE′﹣CE可得答案.【詳解】(1)如圖1,過點E作EM⊥BC于點M.由題意知∠BCE=71°、EC=54,∴EM=ECsin∠BCE=54sin71°≈51.3,則單車車座E到地面的高度為51.3+30≈81cm;(2)如圖2所示,過點E′作E′H⊥BC于點H.由題意知E′H=70×0.85=59.5,則E′C==≈62.6,∴EE′=CE′﹣CE=62.6﹣54=8.6(cm).【點睛】本題考查了解直角三角形的應用,解題的關鍵是明確題意,利用銳角三角函數進行解答.24、見解析【解析】

(1)可以把要證明相等的線段AE,CF放到△AEO,△BFO中考慮全等的條件,由兩個等腰直角三角形得AO=BO,OE=OF,再找夾角相等,這兩個夾角都是直角減去∠BOE的結果,所以相等,由此可以證明△AEO≌△BFO;(2)由(1)知:∠OAC=∠OBF,∴∠BDA=∠AOB=90°,由此可以證明AE⊥BF【詳解】解:(1)證明:在△AEO與△BFO中,∵Rt△OAB與Rt△EOF等腰直角三角形,∴AO=OB,OE=OF,∠AOE=90°-∠BOE=∠BOF,∴△AEO≌△BFO,∴AE=BF;(2)延長AE交BF于D,交OB于C,則∠BCD=∠ACO由(1)知:∠OAC=∠OBF,∴∠BDA=∠AOB=90°,∴AE⊥BF.25、(1)①四邊形CEGF是正方形;②;(2)線段AG與BE之間的數量關系為AG=BE;(3)3【解析】

(1)①由、結合可得四邊形CEGF是矩形,再由即可得證;②由正方形性質知、,據此可得、,利用平行線分線段成比例定理可得;(2)連接CG,只需證∽即可得;(3)證∽得,設,知,由得、、,由可得a的值.【詳解】(1)①∵四邊形ABCD是正方形,∴∠BCD=90°,∠BCA=45°,∵GE⊥BC、GF⊥CD,∴∠CEG=∠CFG=∠ECF=90°,∴四邊形CEGF是矩形,∠CGE=∠ECG=45°,∴EG=EC,∴四邊形CEGF是正方形;②由①知四邊形CEGF是正方形,∴∠CEG=∠B=90°,∠ECG=45°,∴,GE∥AB,∴,故答案為;(2)連接CG,由旋轉性質知∠BCE=∠ACG=α,在Rt△CEG和Rt△CBA中,=、=,∴=,∴△ACG∽△BCE,∴,∴線段AG與BE之間的數量關系為AG=BE;(3)∵∠CEF=45°,點B、E、F三點共線,∴∠BEC=135°,∵△ACG∽△BCE,∴∠AGC=∠BEC=135°,∴∠AGH=∠CAH=45°,∵∠CHA=∠AHG,∴△AHG∽△CHA,∴,設BC=CD=AD=a,則AC=a,則由得,∴AH=a,則DH=AD﹣AH=a,CH==a,∴由得,解得:a=3,即BC=3,故答案為3.【點睛】本題考查了正方形的性質與判定,相似三角形的判定與性質等,綜合性較強,有一定的難度,正確添加輔助線,熟練掌握正方形的判定與性質、相似三角形的判定與性質是解題的關鍵.26、(1)見解析;(1)30°或150°,的長最大值為,此時.【解析】

(1)延長ED交AG于點H,易證△AOG≌△DOE,得到∠AGO=∠DEO,然后運用等量代換證明∠AHE=90°即可;(1)①在旋轉過程中,∠OAG′成為直角有兩種情況:α由0°增大到90°過程中,當∠OAG′=90°時,α=30°,α由90

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論