




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2021-2022學年江蘇省無錫市天一實驗校中考聯考數學試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監考員收回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖是由四個相同的小正方形組成的立體圖形,它的俯視圖為()A. B. C. D.2.方程的解為()A.x=4 B.x=﹣3 C.x=6 D.此方程無解3.如圖所示,在平面直角坐標系中,拋物線y=-x2+2x的頂點為A點,且與x軸的正半軸交于點B,P點為該拋物線對稱軸上一點,則OP+AP的最小值為().A.3 B. C. D.4.如圖:將一個矩形紙片,沿著折疊,使點分別落在點處.若,則的度數為()A. B. C. D.5.如圖,AB是⊙O的直徑,點E為BC的中點,AB=4,∠BED=120°,則圖中陰影部分的面積之和為()A.1 B. C. D.6.如圖,在四邊形ABCD中,∠A+∠D=α,∠ABC的平分線與∠BCD的平分線交于點P,則∠P=()A.90°-α B.90°+α C. D.360°-α7.已知二次函數y=(x+m)2–n的圖象如圖所示,則一次函數y=mx+n與反比例函數y=的圖象可能是()A. B. C. D.8.若關于x的一元二次方程(m-1)x2+x+m2-5m+3=0有一個根為1,則m的值為A.1 B.3 C.0 D.1或39.甲、乙兩船從相距300km的A、B兩地同時出發相向而行,甲船從A地順流航行180km時與從B地逆流航行的乙船相遇,水流的速度為6km/h,若甲、乙兩船在靜水中的速度均為xkm/h,則求兩船在靜水中的速度可列方程為()A.= B.=C.= D.=10.若反比例函數的圖像經過點,則一次函數與在同一平面直角坐標系中的大致圖像是()A. B. C. D.11.在平面直角坐標系中,點是線段上一點,以原點為位似中心把放大到原來的兩倍,則點的對應點的坐標為()A. B.或C. D.或12.的相反數是A.4 B. C. D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,為了解全校300名男生的身高情況,隨機抽取若干男生進行身高測量,將所得數據(精確到1cm)整理畫出頻數分布直方圖(每組數據含最低值,不含最高值),估計該校男生的身高在170cm﹣175cm之間的人數約有_____人.14.已知⊙O半徑為1,A、B在⊙O上,且,則AB所對的圓周角為__o.15.如圖,一艘船向正北航行,在A處看到燈塔S在船的北偏東30°的方向上,航行12海里到達B點,在B處看到燈塔S在船的北偏東60°的方向上,此船繼續沿正北方向航行過程中距燈塔S的最近距離是_____海里(不近似計算).16.如圖,是由一些大小相同的小正方體搭成的幾何體分別從正面看和從上面看得到的平面圖形,則搭成該幾何體的小正方體最多是_______個.17.如圖,點P是邊長為2的正方形ABCD的對角線BD上的動點,過點P分別作PE⊥BC于點E,PF⊥DC于點F,連接AP并延長,交射線BC于點H,交射線DC于點M,連接EF交AH于點G,當點P在BD上運動時(不包括B、D兩點),以下結論:①MF=MC;②AH⊥EF;③AP2=PM?PH;④EF的最小值是.其中正確的是________.(把你認為正確結論的序號都填上)18.舉重比賽的總成績是選手的挺舉與抓舉兩項成績之和,若其中一項三次挑戰失敗,則該項成績為0,甲、乙是同一重量級別的舉重選手,他們近三年六次重要比賽的成績如下(單位:公斤):如果你是教練,要選派一名選手參加國際比賽,那么你會選擇_____(填“甲”或“乙”),理由是___________.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)如圖,在Rt△ABC中,∠ACB=90°,以AC為直徑的⊙O與AB邊交于點D,過點D作⊙O的切線.交BC于點E.求證:BE=EC填空:①若∠B=30°,AC=2,則DE=______;②當∠B=______度時,以O,D,E,C為頂點的四邊形是正方形.20.(6分)(2013年四川綿陽12分)如圖,AB是⊙O的直徑,C是半圓O上的一點,AC平分∠DAB,AD⊥CD,垂足為D,AD交⊙O于E,連接CE.(1)判斷CD與⊙O的位置關系,并證明你的結論;(2)若E是的中點,⊙O的半徑為1,求圖中陰影部分的面積.21.(6分)如圖,△ABC內接于⊙O,且AB為⊙O的直徑,OD⊥AB,與AC交于點E,與過點C的⊙O的切線交于點D.若AC=4,BC=2,求OE的長.試判斷∠A與∠CDE的數量關系,并說明理由.22.(8分)如圖,益陽市梓山湖中有一孤立小島,湖邊有一條筆直的觀光小道AB,現決定從小島架一座與觀光小道垂直的小橋PD,小張在小道上測得如下數據:AB=80.0米,∠PAB=38.1°,∠PBA=26.1.請幫助小張求出小橋PD的長并確定小橋在小道上的位置.(以A,B為參照點,結果精確到0.1米)(參考數據:sin38.1°=0.62,cos38.1°=0.78,tan38.1°=0.80,sin26.1°=0.41,cos26.1°=0.89,tan26.1°=0.10)23.(8分)如圖,△DEF是由△ABC通過一次旋轉得到的,請用直尺和圓規畫出旋轉中心.24.(10分)在數學上,我們把符合一定條件的動點所形成的圖形叫做滿足該條件的點的軌跡.例如:動點P的坐標滿足(m,m﹣1),所有符合該條件的點組成的圖象在平面直角坐標系xOy中就是一次函數y=x﹣1的圖象.即點P的軌跡就是直線y=x﹣1.(1)若m、n滿足等式mn﹣m=6,則(m,n﹣1)在平面直角坐標系xOy中的軌跡是;(2)若點P(x,y)到點A(0,1)的距離與到直線y=﹣1的距離相等,求點P的軌跡;(3)若拋物線y=上有兩動點M、N滿足MN=a(a為常數,且a≥4),設線段MN的中點為Q,求點Q到x軸的最短距離.25.(10分)如圖,在△ABC中,∠C=90°,E是BC上一點,ED⊥AB,垂足為D.求證:△ABC∽△EBD.26.(12分)如圖,在矩形紙片ABCD中,AB=6,BC=1.把△BCD沿對角線BD折疊,使點C落在C′處,BC′交AD于點G;E、F分別是C′D和BD上的點,線段EF交AD于點H,把△FDE沿EF折疊,使點D落在D′處,點D′恰好與點A重合.(1)求證:△ABG≌△C′DG;(2)求tan∠ABG的值;(3)求EF的長.27.(12分)如圖,某校數學興趣小組要測量大樓AB的高度,他們在點C處測得樓頂B的仰角為32°,再往大樓AB方向前進至點D處測得樓頂B的仰角為48°,CD=96m,其中點A、D、C在同一直線上.求AD的長和大樓AB的高度(結果精確到2m)參考數據:sin48°≈2.74,cos48°≈2.67,tan48°≈2.22,≈2.73
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、B【解析】
根據俯視圖是從上往下看的圖形解答即可.【詳解】從上往下看到的圖形是:.故選B.【點睛】本題考查三視圖的知識,解決此類圖的關鍵是由三視圖得到相應的立體圖形.從正面看到的圖是正視圖,從上面看到的圖形是俯視圖,從左面看到的圖形是左視圖,能看到的線畫實線,被遮擋的線畫虛線.2、C【解析】
先把分式方程化為整式方程,求出x的值,代入最簡公分母進行檢驗.【詳解】方程兩邊同時乘以x-2得到1-(x-2)=﹣3,解得x=6.將x=6代入x-2得6-2=4,∴x=6就是原方程的解.故選C【點睛】本題考查的是解分式方程,熟知解分式方程的基本步驟是解答此題的關鍵.3、A【解析】
連接AO,AB,PB,作PH⊥OA于H,BC⊥AO于C,解方程得到-x2+2x=0得到點B,再利用配方法得到點A,得到OA的長度,判斷△AOB為等邊三角形,然后利用∠OAP=30°得到PH=AP,利用拋物線的性質得到PO=PB,再根據兩點之間線段最短求解.【詳解】連接AO,AB,PB,作PH⊥OA于H,BC⊥AO于C,如圖當y=0時-x2+2x=0,得x1=0,x2=2,所以B(2,0),由于y=-x2+2x=-(x-)2+3,所以A(,3),所以AB=AO=2,AO=AB=OB,所以三角形AOB為等邊三角形,∠OAP=30°得到PH=AP,因為AP垂直平分OB,所以PO=PB,所以OP+AP=PB+PH,所以當H,P,B共線時,PB+PH最短,而BC=AB=3,所以最小值為3.故選A.【點睛】本題考查的是二次函數的綜合運用,熟練掌握二次函數的性質和最短途徑的解決方法是解題的關鍵.4、B【解析】根據折疊前后對應角相等可知.
解:設∠ABE=x,
根據折疊前后角相等可知,∠C1BE=∠CBE=50°+x,
所以50°+x+x=90°,
解得x=20°.
故選B.“點睛”本題考查圖形的翻折變換,解題過程中應注意折疊是一種對稱變換,它屬于軸對稱,根據軸對稱的性質,折疊前后圖形的形狀和大小不變,如本題中折疊前后角相等.5、C【解析】連接AE,OD,OE.∵AB是直徑,∴∠AEB=90°.又∵∠BED=120°,∴∠AED=30°.∴∠AOD=2∠AED=60°.∵OA=OD.∴△AOD是等邊三角形.∴∠A=60°.又∵點E為BC的中點,∠AED=90°,∴AB=AC.∴△ABC是等邊三角形,∴△EDC是等邊三角形,且邊長是△ABC邊長的一半2,高是.∴∠BOE=∠EOD=60°,∴和弦BE圍成的部分的面積=和弦DE圍成的部分的面積.∴陰影部分的面積=.故選C.6、C【解析】試題分析:∵四邊形ABCD中,∠ABC+∠BCD=360°﹣(∠A+∠D)=360°﹣α,∵PB和PC分別為∠ABC、∠BCD的平分線,∴∠PBC+∠PCB=(∠ABC+∠BCD)=(360°﹣α)=180°﹣α,則∠P=180°﹣(∠PBC+∠PCB)=180°﹣(180°﹣α)=α.故選C.考點:1.多邊形內角與外角2.三角形內角和定理.7、C【解析】試題解析:觀察二次函數圖象可知:∴一次函數y=mx+n的圖象經過第一、二、四象限,反比例函數的圖象在第二、四象限.故選D.8、B【解析】
直接把x=1代入已知方程即可得到關于m的方程,解方程即可求出m的值.【詳解】∵x=1是方程(m﹣1)x2+x+m2﹣5m+3=0的一個根,∴(m﹣1)+1+m2﹣5m+3=0,∴m2﹣4m+3=0,∴m=1或m=3,但當m=1時方程的二次項系數為0,∴m=3.故答案選B.【點睛】本題考查了一元二次方程的解,解題的關鍵是熟練的掌握一元二次方程的運算.9、A【解析】分析:直接利用兩船的行駛距離除以速度=時間,得出等式求出答案.詳解:設甲、乙兩船在靜水中的速度均為xkm/h,則求兩船在靜水中的速度可列方程為:=.故選A.點睛:此題主要考查了由實際問題抽象出分式方程,正確表示出行駛的時間和速度是解題關鍵.10、D【解析】
甶待定系數法可求出函數的解析式為:,由上步所得可知比例系數為負,聯系反比例函數,一次函數的性質即可確定函數圖象.【詳解】解:由于函數的圖像經過點,則有∴圖象過第二、四象限,
∵k=-1,
∴一次函數y=x-1,
∴圖象經過第一、三、四象限,
故選:D.【點睛】本題考查反比例函數的圖象與性質,一次函數的圖象,解題的關鍵是求出函數的解析式,根據解析式進行判斷;11、B【解析】分析:根據位似變換的性質計算即可.詳解:點P(m,n)是線段AB上一點,以原點O為位似中心把△AOB放大到原來的兩倍,則點P的對應點的坐標為(m×2,n×2)或(m×(-2),n×(-2)),即(2m,2n)或(-2m,-2n),故選B.點睛:本題考查的是位似變換、坐標與圖形的性質,在平面直角坐標系中,如果位似變換是以原點為位似中心,相似比為k,那么位似圖形對應點的坐標的比等于k或-k.12、A【解析】
直接利用相反數的定義結合絕對值的定義分析得出答案.【詳解】-1的相反數為1,則1的絕對值是1.故選A.【點睛】本題考查了絕對值和相反數,正確把握相關定義是解題的關鍵.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、1【解析】
用總人數300乘以樣本中身高在170cm-175cm之間的人數占被調查人數的比例.【詳解】估計該校男生的身高在170cm-175cm之間的人數約為300×=1(人),故答案為1.【點睛】本題考查讀頻數分布直方圖的能力和利用統計圖獲取信息的能力;利用統計圖獲取信息時,必須認真觀察、分析、研究統計圖,才能作出正確的判斷和解決問題.14、45o或135o【解析】試題解析:如圖所示,∵OC⊥AB,∴C為AB的中點,即在Rt△AOC中,OA=1,根據勾股定理得:即OC=AC,∴△AOC為等腰直角三角形,同理∵∠AOB與∠ADB都對,∵大角則弦AB所對的圓周角為或故答案為或15、6【解析】試題分析:過S作AB的垂線,設垂足為C.根據三角形外角的性質,易證SB=AB.在Rt△BSC中,運用正弦函數求出SC的長.解:過S作SC⊥AB于C.∵∠SBC=60°,∠A=30°,∴∠BSA=∠SBC﹣∠A=30°,即∠BSA=∠A=30°.∴SB=AB=1.Rt△BCS中,BS=1,∠SBC=60°,∴SC=SB?sin60°=1×=6(海里).即船繼續沿正北方向航行過程中距燈塔S的最近距離是6海里.故答案為:6.16、7【解析】
首先利用從上面看而得出的俯視圖得出該幾何體的第一層是由幾個小正方體組成,然后進一步根據其從正面看得出的主視圖得知其第二層最多可以放幾個小正方體,然后進一步計算即可得出答案.【詳解】根據俯視圖可得出第一層由5個小正方體組成;再結合主視圖,該正方體第二層最多可放2個小正方體,∴,∴最多是7個,故答案為:7.【點睛】本題主要考查了三視圖的運用,熟練掌握三視圖的特性是解題關鍵.17、②③④【解析】
①可用特殊值法證明,當為的中點時,,可見.②可連接,交于點,先根據證明,得到,根據矩形的性質可得,故,又因為,故,故.③先證明,得到,再根據,得到,代換可得.④根據,可知當取最小值時,也取最小值,根據點到直線的距離也就是垂線段最短可得,當時,取最小值,再通過計算可得.【詳解】解:①錯誤.當為的中點時,,可見;②正確.如圖,連接,交于點,,,,,四邊形為矩形,,,,,,,.③正確.,,,,,又,,,,,.④正確.且四邊形為矩形,,當時,取最小值,此時,故的最小值為.故答案為:②③④.【點睛】本題是動點問題,綜合考查了矩形、正方形的性質,全等三角形與相似三角形的性質與判定,線段的最值問題等,合理作出輔助線,熟練掌握各個相關知識點是解答關鍵.18、乙乙的比賽成績比較穩定.【解析】
觀察表格中的數據可知:甲的比賽成績波動幅度較大,故甲的比賽成績不穩定;乙的比賽成績波動幅度較小,故乙的比賽成績比較穩定,據此可得結論.【詳解】觀察表格中的數據可得,甲的比賽成績波動幅度較大,故甲的比賽成績不穩定;乙的比賽成績波動幅度較小,故乙的比賽成績比較穩定;所以要選派一名選手參加國際比賽,應該選擇乙,理由是乙的比賽成績比較穩定.故答案為乙,乙的比賽成績比較穩定.【點睛】本題主要考查了方差,方差是反映一組數據的波動大小的一個量.方差越大,則平均值的離散程度越大,穩定性也越小;反之,則它與其平均值的離散程度越小,穩定性越好.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)見解析;(2)①3;②1.【解析】
(1)證出EC為⊙O的切線;由切線長定理得出EC=ED,再求得EB=ED,即可得出結論;(2)①由含30°角的直角三角形的性質得出AB,由勾股定理求出BC,再由直角三角形斜邊上的中線性質即可得出DE;②由等腰三角形的性質,得到∠ODA=∠A=1°,于是∠DOC=90°然后根據有一組鄰邊相等的矩形是正方形,即可得到結論.【詳解】(1)證明:連接DO.∵∠ACB=90°,AC為直徑,∴EC為⊙O的切線;又∵ED也為⊙O的切線,∴EC=ED,又∵∠EDO=90°,∴∠BDE+∠ADO=90°,∴∠BDE+∠A=90°又∵∠B+∠A=90°,∴∠BDE=∠B,∴BE=ED,∴BE=EC;(2)解:①∵∠ACB=90°,∠B=30°,AC=2,∴AB=2AC=4,∴BC==6,∵AC為直徑,∴∠BDC=∠ADC=90°,由(1)得:BE=EC,∴DE=BC=3,故答案為3;②當∠B=1°時,四邊形ODEC是正方形,理由如下:∵∠ACB=90°,∴∠A=1°,∵OA=OD,∴∠ADO=1°,∴∠AOD=90°,∴∠DOC=90°,∵∠ODE=90°,∴四邊形DECO是矩形,∵OD=OC,∴矩形DECO是正方形.故答案為1.【點睛】本題考查了圓的切線性質、解直角三角形的知識、切線長定理等知識,解題的關鍵是學會添加常用輔助線,構造直角三角形解決問題,屬于中考常考題型.20、解:(1)CD與⊙O相切.理由如下:∵AC為∠DAB的平分線,∴∠DAC=∠BAC.∵OA=OC,∴∠OAC=∠OCA.,∴∠DAC=∠OCA.∴OC∥AD.∵AD⊥CD,∴OC⊥CD.∵OC是⊙O的半徑,∴CD與⊙O相切.(2)如圖,連接EB,由AB為直徑,得到∠AEB=90°,∴EB∥CD,F為EB的中點.∴OF為△ABE的中位線.∴OF=AE=,即CF=DE=.在Rt△OBF中,根據勾股定理得:EF=FB=DC=.∵E是的中點,∴=,∴AE=EC.∴S弓形AE=S弓形EC.∴S陰影=S△DEC=××=.【解析】(1)CD與圓O相切,理由為:由AC為角平分線得到一對角相等,再由OA=OC,利用等邊對等角得到一對角相等,等量代換得到一對內錯角相等,利用內錯角相等兩直線平行得到OC與AD平行,根據AD垂直于CD,得到OC垂直于CD,即可得證.(2)根據E為弧AC的中點,得到弧AE=弧EC,利用等弧對等弦得到AE=EC,可得出弓形AE與弓形EC面積相等,陰影部分面積拼接為直角三角形DEC的面積,求出即可.考點:角平分線定義,等腰三角形的性質,平行的判定和性質,切線的判定,圓周角定理,三角形中位線定理,勾股定理,扇形面積的計算,轉換思想的應用.21、(1);(2)∠CDE=2∠A.【解析】
(1)在Rt△ABC中,由勾股定理得到AB的長,從而得到半徑AO.再由△AOE∽△ACB,得到OE的長;(2)連結OC,得到∠1=∠A,再證∠3=∠CDE,從而得到結論.【詳解】(1)∵AB是⊙O的直徑,∴∠ACB=90°,在Rt△ABC中,由勾股定理得:AB==,∴AO=AB=.∵OD⊥AB,∴∠AOE=∠ACB=90°,又∵∠A=∠A,∴△AOE∽△ACB,∴,∴OE==.(2)∠CDE=2∠A.理由如下:連結OC,∵OA=OC,∴∠1=∠A,∵CD是⊙O的切線,∴OC⊥CD,∴∠OCD=90°,∴∠2+∠CDE=90°,∵OD⊥AB,∴∠2+∠3=90°,∴∠3=∠CDE.∵∠3=∠A+∠1=2∠A,∴∠CDE=2∠A.考點:切線的性質;探究型;和差倍分.22、49.2米【解析】
設PD=x米,在Rt△PAD中表示出AD,在Rt△PDB中表示出BD,再由AB=80.0米,可得出方程,解出即可得出PD的長度,繼而也可確定小橋在小道上的位置.【詳解】解:設PD=x米,∵PD⊥AB,∴∠ADP=∠BDP=90°.在Rt△PAD中,,∴.在Rt△PBD中,,∴.又∵AB=80.0米,∴,解得:x≈24.6,即PD≈24.6米.∴DB=2x=49.2米.答:小橋PD的長度約為24.6米,位于AB之間距B點約49.2米.23、見解析【解析】試題分析:首先根據旋轉的性質,找到兩組對應點,連接這兩組對應點;然后作連接成的兩條線段的垂直平分線,兩垂直平分線的交點即為旋轉中心,據此解答即可.解:如圖所示,點P即為所求作的旋轉中心.24、(1);(2)y=x2;(3)點Q到x軸的最短距離為1.【解析】
(1)先判斷出m(n﹣1)=6,進而得出結論;(2)先求出點P到點A的距離和點P到直線y=﹣1的距離建立方程即可得出結論;(3)設出點M,N的坐標,進而得出點Q的坐標,利用MN=a,得出,即可得出結論.【詳解】(1)設m=x,n﹣1=y,∵mn﹣m=6,∴m(n﹣1)=6,∴xy=6,∴∴(m,n﹣1)在平面直角坐標系xOy中的軌跡是故答案為:;(2)∴點P(x,y)到點A(0,1),∴點P(x,y)到點A(0,1)的距離的平方為x2+(y﹣1)2,∵點P(x,y)到直線y=﹣1的距離的平方為(y+1)2,∵點P(x,y)到點A(0,1)的距離與到直線y=﹣1的距離相等,∴x2+(y﹣1)2=(y+1)2,∴(3)設直線MN的解析式為y=kx+b,M(x1,y1),N(x2,y2),∴線段MN的中點為Q的縱坐標為∴∴x2﹣4kx﹣4b=0,∴x1+x2=4k,x1x2=﹣4b,∴∴∴∴點Q到x軸的最短距離為1.【點睛】此題是二次函數綜合題,主要考查了點的軌跡的定義,兩點間的距離公式,中點坐標公式公式,根與系數的關系,確定出是解本題的關鍵.25、證明見解析【解析】試題分析:先根據垂直的定義得出∠EDB=90°,故可得出∠EDB=∠C.再由∠B=∠B,根據有兩個角相等的兩三角形相似即可得出結論.試
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 毛坯店面出租合同協議書
- 團隊拓展訓練合同協議書
- 水果店轉讓合同協議書
- 友誼合同協議書怎么寫的
- 美容美發商業計劃書概述
- ai教育項目計劃書
- 廣告投放合同協議書樣本
- 中國注射液用鹵化丁基橡膠塞行業市場占有率及投資前景預測分析報告
- 親子研學商業計劃書
- 菜鳥驛站合同協議書范本
- 服務器驗收報告
- 裝配式建筑設計施工總結PPT(127頁)
- [安徽]高速公路改擴建工程交通組織方案(155頁)
- 張齊華:《平均數》課件
- 部編版四年級語文下冊第五單元復習教案設計
- 《鐵路線路里程斷鏈設置和管理規定》
- 土工布檢測報告土工布產品屬性
- 21世紀音樂教育發展趨勢——問題與對策2004年音樂教育國際學術會議在上海音樂學院召開
- 導流明渠混凝土施工方案
- 中國字-中國人-歌詞
- 客戶信用等級評定表(超實用)
評論
0/150
提交評論