云南省紅河州名校2024年中考數學最后沖刺模擬試卷含解析_第1頁
云南省紅河州名校2024年中考數學最后沖刺模擬試卷含解析_第2頁
云南省紅河州名校2024年中考數學最后沖刺模擬試卷含解析_第3頁
云南省紅河州名校2024年中考數學最后沖刺模擬試卷含解析_第4頁
云南省紅河州名校2024年中考數學最后沖刺模擬試卷含解析_第5頁
已閱讀5頁,還剩18頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

云南省紅河州名校2024年中考數學最后沖刺模擬試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監考員收回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.某廠進行技術創新,現在每天比原來多生產30臺機器,并且現在生產500臺機器所需時間與原來生產350臺機器所需時間相同.設現在每天生產x臺機器,根據題意可得方程為()A. B. C. D.2.對于一組統計數據1,1,6,5,1.下列說法錯誤的是()A.眾數是1 B.平均數是4 C.方差是1.6 D.中位數是63.-3的倒數是()A.3 B.13 C.-14.我省2013年的快遞業務量為1.2億件,受益于電子商務發展和法治環境改善等多重因素,快遞業務迅猛發展,2012年增速位居全國第一.若2015年的快遞業務量達到2.5億件,設2012年與2013年這兩年的平均增長率為x,則下列方程正確的是()A.1.2(1+x)=2.5B.1.2(1+2x)=2.5C.1.2(1+x)2=2.5D.1.2(1+x)+1.2(1+x)2=2.55.(﹣1)0+|﹣1|=()A.2B.1C.0D.﹣16.如圖,有一塊含有30°角的直角三角板的兩個頂點放在直尺的對邊上.如果∠2=44°,那么∠1的度數是()A.14°B.15°C.16°D.17°7.如圖,在△ABC中,AB=AC,∠BAC=90°,直角∠EPF的頂點P是BC中點,PE,PF分別交AB,AC于點E,F,給出下列四個結論:①△APE≌△CPF;②AE=CF;③△EAF是等腰直角三角形;④S△ABC=2S四邊形AEPF,上述結論正確的有()A.1個 B.2個 C.3個 D.4個8.觀察下列圖形,其中既是軸對稱圖形,又是中心對稱圖形的是()A. B. C. D.9.一個半徑為24的扇形的弧長等于20π,則這個扇形的圓心角是()A.120° B.135° C.150° D.165°10.如圖,正方形ABCD內接于圓O,AB=4,則圖中陰影部分的面積是()A. B. C. D.11.若55+55+55+55+55=25n,則n的值為()A.10 B.6 C.5 D.312.如果k<0,b>0,那么一次函數y=kx+b的圖象經過()A.第一、二、三象限 B.第二、三、四象限C.第一、三、四象限 D.第一、二、四象限二、填空題:(本大題共6個小題,每小題4分,共24分.)13.在△ABC中,若∠A,∠B滿足|cosA-|+(sinB-)2=0,則∠C=_________.14.已知,正六邊形的邊長為1cm,分別以它的三個不相鄰的頂點為圓心,1cm長為半徑畫弧(如圖),則所得到的三條弧的長度之和為__________cm(結果保留π).15.如圖,在扇形AOB中∠AOB=90°,正方形CDEF的頂點C是弧AB的中點,點D在OB上,點E在OB的延長線上,當扇形AOB的半徑為2時,陰影部分的面積為__________.16.若關于x的分式方程有增根,則m的值為_____.17.如圖,數軸上點A、B、C所表示的數分別為a、b、c,點C是線段AB的中點,若原點O是線段AC上的任意一點,那么a+b-2c=______.18.如圖,點、、在直線上,點,,在直線上,以它們為頂點依次構造第一個正方形,第二個正方形,若的橫坐標是1,則的坐標是______,第n個正方形的面積是______.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)第二十四屆冬季奧林匹克運動會將于2022年2月4日至2月20日在北京舉行,北京將成為歷史上第一座既舉辦過夏奧會又舉辦過冬奧會的城市.某區舉辦了一次冬奧知識網上答題競賽,甲、乙兩校各有名學生參加活動,為了解這兩所學校的成績情況,進行了抽樣調查,過程如下,請補充完整.[收集數據]從甲、乙兩校各隨機抽取名學生,在這次競賽中他們的成績如下:甲:乙:[整理、描述數據]按如下分數段整理、描述這兩組樣本數據:學校人數成績甲乙(說明:優秀成績為,良好成績為合格成績為.)[分析數據]兩組樣本數據的平均分、中位數、眾數如下表所示:學校平均分中位數眾數甲乙其中.[得出結論](1)小明同學說:“這次競賽我得了分,在我們學校排名屬中游略偏上!”由表中數據可知小明是_校的學生;(填“甲”或“乙”)(2)張老師從乙校隨機抽取--名學生的競賽成績,試估計這名學生的競賽成績為優秀的概率為_;(3)根據以上數據推斷一所你認為競賽成績較好的學校,并說明理由:;(至少從兩個不同的角度說明推斷的合理性)20.(6分)化簡:(x-1-)÷.21.(6分)某公司對用戶滿意度進行問卷調查,將連續6天內每天收回的問卷數進行統計,繪制成如圖所示的統計圖.已知從左到右各矩形的高度比為2:3:4:6:4:1.第3天的頻數是2.請你回答:(1)收回問卷最多的一天共收到問卷_________份;(2)本次活動共收回問卷共_________份;(3)市場部對收回的問卷統一進行了編號,通過電腦程序隨機抽選一個編號,抽到問卷是第4天收回的概率是多少?(4)按照(3)中的模式隨機抽選若干編號,確定幸運用戶發放紀念獎,第4天和第6天分別有10份和2份獲獎,那么你認為這兩組中哪個組獲獎率較高?為什么?22.(8分)如圖,已知:AB是⊙O的直徑,點C在⊙O上,CD是⊙O的切線,AD⊥CD于點D,E是AB延長線上一點,CE交⊙O于點F,連接OC、AC.(1)求證:AC平分∠DAO.(2)若∠DAO=105°,∠E=30°①求∠OCE的度數;②若⊙O的半徑為2,求線段EF的長.23.(8分)如圖,圓內接四邊形ABCD的兩組對邊延長線分別交于E、F,∠AEB、∠AFD的平分線交于P點.求證:PE⊥PF.24.(10分)拋物線與x軸交于A,B兩點(點A在點B的左邊),與y軸正半軸交于點C.(1)如圖1,若A(-1,0),B(3,0),①求拋物線的解析式;②P為拋物線上一點,連接AC,PC,若∠PCO=3∠ACO,求點P的橫坐標;(2)如圖2,D為x軸下方拋物線上一點,連DA,DB,若∠BDA+2∠BAD=90°,求點D的縱坐標.25.(10分)某報社為了解市民對“社會主義核心價值觀”的知曉程度,采取隨機抽樣的方式進行問卷調查,調查結果分為“A.非常了解”、“B.了解”、“C.基本了解”三個等級,并根據調查結果繪制了如下兩幅不完整的統計圖.(1)這次調查的市民人數為________人,m=________,n=________;(2)補全條形統計圖;(3)若該市約有市民100000人,請你根據抽樣調查的結果,估計該市大約有多少人對“社會主義核心價值觀”達到“A.非常了解”的程度.26.(12分)如圖1,在正方形ABCD中,E是AB上一點,F是AD延長線上一點,且DF=BE,求證:CE=CF;如圖2,在正方形ABCD中,E是AB上一點,G是AD上一點,如果∠GCE=45°,請你利用(1)的結論證明:GE=BE+GD;運用(1)(2)解答中所積累的經驗和知識,完成下題:如圖3,在直角梯形ABCD中,AD∥BC(BC>AD),∠B=90°,AB=BC,E是AB上一點,且∠DCE=45°,BE=4,DE=10,求直角梯形ABCD的面積.27.(12分)某食品廠生產一種半成品食材,產量百千克與銷售價格元千克滿足函數關系式,從市場反饋的信息發現,該半成品食材的市場需求量百千克與銷售價格元千克滿足一次函數關系,如下表:銷售價格元千克2410市場需求量百千克12104已知按物價部門規定銷售價格x不低于2元千克且不高于10元千克求q與x的函數關系式;當產量小于或等于市場需求量時,這種半成品食材能全部售出,求此時x的取值范圍;當產量大于市場需求量時,只能售出符合市場需求量的半成品食材,剩余的食材由于保質期短而只能廢棄若該半成品食材的成本是2元千克.求廠家獲得的利潤百元與銷售價格x的函數關系式;當廠家獲得的利潤百元隨銷售價格x的上漲而增加時,直接寫出x的取值范圍利潤售價成本

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、A【解析】

根據現在生產500臺機器所需時間與原計劃生產350臺機器所需時間相同,所以可得等量關系為:現在生產500臺機器所需時間=原計劃生產350臺機器所需時間.【詳解】現在每天生產x臺機器,則原計劃每天生產(x﹣30)臺機器.依題意得:,故選A.【點睛】本題考查了分式方程的應用,弄清題意,找準等量關系列出方程是解題的關鍵.2、D【解析】

根據中位數、眾數、方差等的概念計算即可得解.【詳解】A、這組數據中1都出現了1次,出現的次數最多,所以這組數據的眾數為1,此選項正確;B、由平均數公式求得這組數據的平均數為4,故此選項正確;C、S2=[(1﹣4)2+(1﹣4)2+(6﹣4)2+(5﹣4)2+(1﹣4)2]=1.6,故此選項正確;D、將這組數據按從大到校的順序排列,第1個數是1,故中位數為1,故此選項錯誤;故選D.考點:1.眾數;2.平均數;1.方差;4.中位數.3、C【解析】

由互為倒數的兩數之積為1,即可求解.【詳解】∵-3×-13=1,∴故選C4、C【解析】試題解析:設2015年與2016年這兩年的平均增長率為x,由題意得:1.2(1+x)2=2.5,故選C.5、A【解析】

根據絕對值和數的0次冪的概念作答即可.【詳解】原式=1+1=2故答案為:A.【點睛】本題考查的知識點是絕對值和數的0次冪,解題關鍵是熟記數的0次冪為1.6、C【解析】

依據∠ABC=60°,∠2=44°,即可得到∠EBC=16°,再根據BE∥CD,即可得出∠1=∠EBC=16°.【詳解】如圖,∵∠ABC=60°,∠2=44°,∴∠EBC=16°,∵BE∥CD,∴∠1=∠EBC=16°,故選:C.【點睛】本題主要考查了平行線的性質,解題時注意:兩直線平行,內錯角相等.7、C【解析】

利用“角邊角”證明△APE和△CPF全等,根據全等三角形的可得AE=CF,再根據等腰直角三角形的定義得到△EFP是等腰直角三角形,根據全等三角形的面積相等可得△APE的面積等于△CPF的面積相等,然后求出四邊形AEPF的面積等于△ABC的面積的一半.【詳解】∵AB=AC,∠BAC=90°,點P是BC的中點,∴AP⊥BC,AP=PC,∠EAP=∠C=45°,∴∠APF+∠CPF=90°,∵∠EPF是直角,∴∠APF+∠APE=90°,∴∠APE=∠CPF,在△APE和△CPF中,,∴△APE≌△CPF(ASA),∴AE=CF,故①②正確;∵△AEP≌△CFP,同理可證△APF≌△BPE,∴△EFP是等腰直角三角形,故③錯誤;∵△APE≌△CPF,∴S△APE=S△CPF,∴四邊形AEPF=S△AEP+S△APF=S△CPF+S△BPE=S△ABC.故④正確,故選C.【點睛】本題考查了全等三角形的判定與性質,等腰直角三角形的判定與性質,根據同角的余角相等求出∠APE=∠CPF,從而得到△APE和△CPF全等是解題的關鍵,也是本題的突破點.8、C【解析】

根據軸對稱圖形與中心對稱圖形的概念求解.【詳解】解:A、既不是軸對稱圖形,也不是中心對稱圖形.故本選項錯誤;B、是軸對稱圖形,不是中心對稱圖形.故本選項錯誤;C、是軸對稱圖形,也是中心對稱圖形.故本選項正確;D、既不是軸對稱圖形,也不是中心對稱圖形.故本選項錯誤.故選C.【點睛】本題考查了中心對稱圖形與軸對稱圖形的概念:軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分沿對稱軸折疊后可重合;中心對稱圖形是要尋找對稱中心,旋轉180度后與原圖重合.9、C【解析】

這個扇形的圓心角的度數為n°,根據弧長公式得到20π=,然后解方程即可.【詳解】解:設這個扇形的圓心角的度數為n°,根據題意得20π=,解得n=150,即這個扇形的圓心角為150°.故選C.【點睛】本題考查了弧長公式:L=(n為扇形的圓心角的度數,R為扇形所在圓的半徑).10、B【解析】

連接OA、OB,利用正方形的性質得出OA=ABcos45°=2,根據陰影部分的面積=S⊙O-S正方形ABCD列式計算可得.【詳解】解:連接OA、OB,∵四邊形ABCD是正方形,∴∠AOB=90°,∠OAB=45°,∴OA=ABcos45°=4×=2,所以陰影部分的面積=S⊙O-S正方形ABCD=π×(2)2-4×4=8π-1.故選B.【點睛】本題主要考查扇形的面積計算,解題的關鍵是熟練掌握正方形的性質和圓的面積公式.11、D【解析】

直接利用提取公因式法以及冪的乘方運算法則將原式變形進而得出答案.【詳解】解:∵55+55+55+55+55=25n,∴55×5=52n,則56=52n,解得:n=1.故選D.【點睛】此題主要考查了冪的乘方運算,正確將原式變形是解題關鍵.12、D【解析】

根據k、b的符號來求確定一次函數y=kx+b的圖象所經過的象限.【詳解】∵k<0,

∴一次函數y=kx+b的圖象經過第二、四象限.

又∵b>0時,

∴一次函數y=kx+b的圖象與y軸交與正半軸.

綜上所述,該一次函數圖象經過第一、二、四象限.

故選D.【點睛】本題主要考查一次函數圖象在坐標平面內的位置與k、b的關系.解答本題注意理解:直線y=kx+b所在的位置與k、b的符號有直接的關系.k>0時,直線必經過一、三象限.k<0時,直線必經過二、四象限.b>0時,直線與y軸正半軸相交.b=0時,直線過原點;b<0時,直線與y軸負半軸相交.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、75°【解析】【分析】根據絕對值及偶次方的非負性,可得出cosA及sinB的值,從而得出∠A及∠B的度數,利用三角形的內角和定理可得出∠C的度數.【詳解】∵|cosA-|+(sinB-)2=0,∴cosA=,sinB=,∴∠A=60°,∠B=45°,∴∠C=180°-∠A-∠B=75°,故答案為:75°.【點睛】本題考查了特殊角的三角函數值及非負數的性質,解答本題的關鍵是得出cosA及sinB的值,另外要求我們熟練掌握一些特殊角的三角函數值.14、【解析】考點:弧長的計算;正多邊形和圓.分析:本題主要考查求正多邊形的每一個內角,以及弧長計算公式.解:方法一:先求出正六邊形的每一個內角==120°,所得到的三條弧的長度之和=3×=2πcm;方法二:先求出正六邊形的每一個外角為60°,得正六邊形的每一個內角120°,每條弧的度數為120°,三條弧可拼成一整圓,其三條弧的長度之和為2πcm.15、π﹣1【解析】

根據勾股定理可求OC的長,根據題意可得出陰影部分的面積=扇形BOC的面積-三角形ODC的面積,依此列式計算即可求解.【詳解】連接OC∵在扇形AOB中∠AOB=90°,正方形CDEF的頂點C是弧AB的中點,∴∠COD=45°,∴OC=CD=1,∴CD=OD=1,∴陰影部分的面積=扇形BOC的面積﹣三角形ODC的面積=﹣×11=π﹣1.故答案為π﹣1.【點睛】本題考查正方形的性質和扇形面積的計算,解題關鍵是得到扇形半徑的長度.16、±【解析】

增根是分式方程化為整式方程后產生的使分式方程的分母為0的根.有增根,最簡公分母x-3=0,所以增根是x=3,把增根代入化為整式方程的方程即可求出m的值.【詳解】方程兩邊都乘x-3,得x-2(x-3)=m2,∵原方程增根為x=3,∴把x=3代入整式方程,得m=±.【點睛】解決增根問題的步驟:①確定增根的值;②化分式方程為整式方程;③把增根代入整式方程即可求得相關字母的值.17、1【解析】∵點A、B、C所表示的數分別為a、b、c,點C是線段AB的中點,∴由中點公式得:c=,∴a+b=2c,∴a+b-2c=1.故答案為1.18、(4,2),【解析】

由的橫坐標是1,可得,利用兩個函數解析式求出點、的坐標,得出的長度以及第1個正方形的面積,求出的坐標;然后再求出的坐標,得出第2個正方形的面積,求出的坐標;再求出、的坐標,得出第3個正方形的面積;從而得出規律即可得到第n個正方形的面積.【詳解】解:點、、在直線上,的橫坐標是1,

點,,在直線上,

,,

,,

第1個正方形的面積為:;

,,,

第2個正方形的面積為:;

,,

第3個正方形的面積為:;

第n個正方形的面積為:.

故答案為,.【點睛】本題考查了一次函數圖象上點的坐標特征,正方形的性質以及規律型中圖形的變化規律,解題的關鍵是找出規律本題難度適中,解決該題型題目時,根據給定的條件求出第1、2、3個正方形的邊長,根據數據的變化找出變化規律是關鍵.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、80;(1)甲;(2);(3)乙學校競賽成績較好,理由見解析【解析】

首先根據乙校的成績結合眾數的定義即可得出a的值;(1)根據兩個學校成績的中位數進一步判斷即可;(2)根據概率的定義,結合乙校優秀成績的概率進一步求解即可;(3)根據題意,從平均數以及中位數兩方面加以比較分析即可.【詳解】由乙校成績可知,其中80出現的次數最多,故80為該組數據的眾數,∴a=80,故答案為:80;(1)由表格可知,甲校成績的中位數為60,乙校成績的中位數為75,∵小明這次競賽得了分,在他們學校排名屬中游略偏上,∴小明為甲校學生,故答案為:甲;(2)乙校隨便抽取一名學生的成績,該學生成績為優秀的概率為:,故答案為:;(3)乙校競賽成績較好,理由如下:因為乙校的平均分高于甲校的平均分說明平均水平高,乙校的中位數75高于甲校的中位數65,說明乙校分數不低于70分的學生比甲校多,綜上所述,乙校競賽成績較好.【點睛】本題主要考查了眾數、中位數、平均數的定義與簡單概率的計算的綜合運用,熟練掌握相關概念是解題關鍵.20、【解析】

根據分式的混合運算先計算括號里的再進行乘除.【詳解】(x-1-)÷=·=·=【點睛】此題主要考查分式的計算,解題的關鍵是先進行通分,再進行加減乘除運算.21、1860分【解析】分析:(1)觀察圖形可知,第4天收到問卷最多,用矩形的高度比=頻數之比即可得出結論;(2)由于組距相同,各矩形的高度比即為頻數的比,可由數據總數=某組的頻數÷頻率計算;(3)根據概率公式計算即可;(4)分別計算第4天,第6天的獲獎率后比較即可.詳解:(1)由圖可知:第4天收到問卷最多,設份數為x,則:4:6=2:x,解得:x=18;(2)2÷[4÷(2+3+4+6+4+1)]=60份;(3)抽到第4天回收問卷的概率是;(4)第4天收回問卷獲獎率,第6天收回問卷獲獎率.∵,∴第6天收回問卷獲獎率高.點睛:本題考查了對頻數分布直方圖的掌握情況,根據圖中信息,求出頻率,用來估計概率.用到的知識點為:總體數目=部分數目÷相應頻率.部分的具體數目=總體數目×相應頻率.概率=所求情況數與總情況數之比.22、(1)證明見解析;(2)①∠OCE=45°;②EF=-2.【解析】【試題分析】(1)根據直線與⊙O相切的性質,得OC⊥CD.又因為AD⊥CD,根據同一平面內,垂直于同一條直線的兩條直線也平行,得:AD//OC.∠DAC=∠OCA.又因為OC=OA,根據等邊對等角,得∠OAC=∠OCA.等量代換得:∠DAC=∠OAC.根據角平分線的定義得:AC平分∠DAO.(2)①因為AD//OC,∠DAO=105°,根據兩直線平行,同位角相等得,∠EOC=∠DAO=105°,在中,∠E=30°,利用內角和定理,得:∠OCE=45°.②作OG⊥CE于點G,根據垂徑定理可得FG=CG,因為OC=,∠OCE=45°.等腰直角三角形的斜邊是腰長的倍,得CG=OG=2.FG=2.在Rt△OGE中,∠E=30°,得GE=,則EF=GE-FG=-2.【試題解析】(1)∵直線與⊙O相切,∴OC⊥CD.又∵AD⊥CD,∴AD//OC.∴∠DAC=∠OCA.又∵OC=OA,∴∠OAC=∠OCA.∴∠DAC=∠OAC.∴AC平分∠DAO.(2)解:①∵AD//OC,∠DAO=105°,∴∠EOC=∠DAO=105°∵∠E=30°,∴∠OCE=45°.②作OG⊥CE于點G,可得FG=CG∵OC=,∠OCE=45°.∴CG=OG=2.∴FG=2.∵在Rt△OGE中,∠E=30°,∴GE=.∴EF=GE-FG=-2.【方法點睛】本題目是一道圓的綜合題目,涉及到圓的切線的性質,平行線的性質及判定,三角形內角和,垂徑定理,難度為中等.23、證明見解析.【解析】

由圓內接四邊形ABCD的兩組對邊延長線分別交于E、F,∠AEB、∠AFD的平分線交于P點,繼而可得EM=EN,即可證得:PE⊥PF.【詳解】∵四邊形內接于圓,∴,∵平分,∴,∵,,∴,∴,∵平分,∴.【點睛】此題考查了圓的內接多邊形的性質以及圓周角定理.此題難度不大,注意掌握數形結合思想的應用.24、(1)①y=-x2+2x+3②(2)-1【解析】分析:(1)①把A、B的坐標代入解析式,解方程組即可得到結論;②延長CP交x軸于點E,在x軸上取點D使CD=CA,作EN⊥CD交CD的延長線于N.由CD=CA,OC⊥AD,得到∠DCO=∠ACO.由∠PCO=3∠ACO,得到∠ACD=∠ECD,從而有tan∠ACD=tan∠ECD,,即可得出AI、CI的長,進而得到.設EN=3x,則CN=4x,由tan∠CDO=tan∠EDN,得到,故設DN=x,則CD=CN-DN=3x=,解方程即可得出E的坐標,進而求出CE的直線解析式,聯立解方程組即可得到結論;(2)作DI⊥x軸,垂足為I.可以證明△EBD∽△DBC,由相似三角形對應邊成比例得到,即,整理得.令y=0,得:.故,從而得到.由,得到,解方程即可得到結論.詳解:(1)①把A(-1,0),B(3,0)代入得:,解得:,∴②延長CP交x軸于點E,在x軸上取點D使CD=CA,作EN⊥CD交CD的延長線于N.∵CD=CA,OC⊥AD,∴∠DCO=∠ACO.∵∠PCO=3∠ACO,∴∠ACD=∠ECD,∴tan∠ACD=tan∠ECD,∴,AI=,∴CI=,∴.設EN=3x,則CN=4x.∵tan∠CDO=tan∠EDN,∴,∴DN=x,∴CD=CN-DN=3x=,∴,∴DE=,E(,0).CE的直線解析式為:,,解得:.點P的橫坐標.(2)作DI⊥x軸,垂足為I.∵∠BDA+2∠BAD=90°,∴∠DBI+∠BAD=90°.∵∠BDI+∠DBI=90°,∴∠BAD=∠BDI.∵∠BID=∠DIA,∴△EBD∽△DBC,∴,∴,∴.令y=0,得:.∴,∴.∵,∴,解得:yD=0或-1.∵D為x軸下方一點,∴,∴D的縱坐標-1.點睛:本題是二次函數的綜合題.考查了二次函數解析式、性質,相似三角形的判定與性質,根與系數的關系.綜合性比較強,難度較大.25、(1)500,12,32;(2)補圖見解析;(3)該市大約有32000人對“社會主義核心價值觀”達到“A.非常了解”的程度.【解析】

(1)根據項目B的人數以及百分比,即可得到這次調查的市民人數,據此可得項目A,C的百分比;(2)根據對“社會主義核心價值觀”達到“A.非常了解”的人數為:32%×500=160,補全條形統計圖;(3)根據全市總人數乘以A項目所占百分比,即可得到該市對“社會主義核心價值觀”達到“A非常了解”的程度的人數.【詳解】試題分析:試題解析:(1)280÷56%=500人,60÷500=12%,1﹣56%﹣12%=32%,(2)對“社會主義核心價值觀”達到“A.非常了解”的人數為:32%×500=160,補全條形統計圖如下:(3)100000×32%=32000(人),答:該市大約有32000人對“社會主義核心價值觀”達到“A.非常了解”的程度.26、(1)、(2)證明見解析(3)28【解析】試題分析:(1)根據正方形的性質,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論