




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
山西省高平市重點達標名校2023-2024學年中考聯考數學試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(共10小題,每小題3分,共30分)1.多項式4a﹣a3分解因式的結果是()A.a(4﹣a2)B.a(2﹣a)(2+a)C.a(a﹣2)(a+2)D.a(2﹣a)22.若a+b=3,,則ab等于()A.2 B.1 C.﹣2 D.﹣13.下列運算正確的是()A.2a﹣a=1B.2a+b=2abC.(a4)3=a7D.(﹣a)2?(﹣a)3=﹣a54.一、單選題在某校“我的中國夢”演講比賽中,有7名學生參加了決賽,他們決賽的最終成績各不相同.其中的一名學生想要知道自己能否進入前3名,不僅要了解自己的成績,還要了解這7名學生成績的()A.平均數 B.眾數 C.中位數 D.方差5.如圖,在直角坐標系xOy中,若拋物線l:y=﹣x2+bx+c(b,c為常數)的頂點D位于直線y=﹣2與x軸之間的區域(不包括直線y=﹣2和x軸),則l與直線y=﹣1交點的個數是()A.0個 B.1個或2個C.0個、1個或2個 D.只有1個6.的倒數是()A.﹣ B.2 C.﹣2 D.7.若α,β是一元二次方程3x2+2x-9=0的兩根,則的值是(
).A. B.- C.- D.8.化簡:-,結果正確的是()A.1 B. C. D.9.如圖,∠AOB=45°,OC是∠AOB的角平分線,PM⊥OB,垂足為點M,PN∥OB,PN與OA相交于點N,那么的值等于()A. B. C. D.10.下列調查中,最適合采用普查方式的是()A.對太原市民知曉“中國夢”內涵情況的調查B.對全班同學1分鐘仰臥起坐成績的調查C.對2018年央視春節聯歡晚會收視率的調查D.對2017年全國快遞包裹產生的包裝垃圾數量的調查二、填空題(本大題共6個小題,每小題3分,共18分)11.已知一組數據:3,3,4,5,5,則它的方差為____________12.方程的根是__________.13.如圖,在矩形ABCD中,AD=2,CD=1,連接AC,以對角線AC為邊,按逆時針方向作矩形ABCD的相似矩形AB1C1C,再連接AC1,以對角線AC1為邊作矩形AB1C1C的相似矩形AB2C2C1,…,按此規律繼續下去,則矩形ABnCnCn-1的面積為________________.14.如圖①,四邊形ABCD中,AB∥CD,∠ADC=90°,P從A點出發,以每秒1個單位長度的速度,按A→B→C→D的順序在邊上勻速運動,設P點的運動時間為t秒,△PAD的面積為S,S關于t的函數圖象如圖②所示,當P運動到BC中點時,△PAD的面積為______.15.如圖,AD∥BE∥CF,直線l1,l2與這三條平行線分別交于點A,B,C和點D,E,F,,DE=6,則EF=.16.函數y=的定義域是________.三、解答題(共8題,共72分)17.(8分)計算:|﹣1|﹣2sin45°+﹣18.(8分)如圖,在平面直角坐標系中,△ABC的三個頂點坐標分別為A(﹣2,1),B(﹣1,4),C(﹣3,2)畫出△ABC關于點B成中心對稱的圖形△A1BC1;以原點O為位似中心,位似比為1:2,在y軸的左側畫出△ABC放大后的圖形△A2B2C2,并直接寫出C2的坐標.19.(8分)列方程解應用題:某地2016年為做好“精準扶貧”,投入資金1280萬元用于異地安置,并規劃投入資金逐年增加,2018年在2016年的基礎上增加投入資金1600萬元.從2016年到2018年,該地投入異地安置資金的年平均增長率為多少?20.(8分)如圖,拋物線y=ax2﹣2ax+c(a≠0)與y軸交于點C(0,4),與x軸交于點A、B,點A坐標為(4,0).(1)求該拋物線的解析式;(2)拋物線的頂點為N,在x軸上找一點K,使CK+KN最小,并求出點K的坐標;(3)點Q是線段AB上的動點,過點Q作QE∥AC,交BC于點E,連接CQ.當△CQE的面積最大時,求點Q的坐標;(4)若平行于x軸的動直線l與該拋物線交于點P,與直線AC交于點F,點D的坐標為(2,0).問:是否存在這樣的直線l,使得△ODF是等腰三角形?若存在,請求出點P的坐標;若不存在,請說明理由.21.(8分)已知二次函數y=a(x+m)2的頂點坐標為(﹣1,0),且過點A(﹣2,﹣).(1)求這個二次函數的解析式;(2)點B(2,﹣2)在這個函數圖象上嗎?(3)你能通過左,右平移函數圖象,使它過點B嗎?若能,請寫出平移方案.22.(10分)如圖,某校一幢教學大樓的頂部豎有一塊“傳承文明,啟智求真”的宣傳牌CD.小明在山坡的坡腳A處測得宣傳牌底部D的仰角為60°,沿山坡向上走到B處測得宣傳牌頂部C的仰角為45°.已知山坡AB的坡度i=1:,AB=10米,AE=15米,求這塊宣傳牌CD的高度.(測角器的高度忽略不計,結果精確到0.1米.參考數據:≈1.414,≈1.732)23.(12分)如圖,已知等腰三角形ABC的底角為30°,以BC為直徑的⊙O與底邊AB交于點D,過D作DE⊥AC,垂足為E.證明:DE為⊙O的切線;連接OE,若BC=4,求△OEC的面積.24.已知:如圖所示,在中,,,求和的度數.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解析】
首先提取公因式a,再利用平方差公式分解因式得出答案.【詳解】4a﹣a3=a(4﹣a2)=a(2﹣a)(2+a).故選:B.【點睛】此題主要考查了提取公因式法以及公式法分解因式,正確運用公式是解題關鍵.2、B【解析】
∵a+b=3,∴(a+b)2=9∴a2+2ab+b2=9∵a2+b2=7∴7+2ab=9,7+2ab=9∴ab=1.故選B.考點:完全平方公式;整體代入.3、D【解析】【分析】根據合并同類項,冪的乘方,同底數冪的乘法的計算法則解答.【詳解】A、2a﹣a=a,故本選項錯誤;B、2a與b不是同類項,不能合并,故本選項錯誤;C、(a4)3=a12,故本選項錯誤;D、(﹣a)2?(﹣a)3=﹣a5,故本選項正確,故選D.【點睛】本題考查了合并同類項、冪的乘方、同底數冪的乘法,熟練掌握各運算的運算法則是解題的關鍵.4、C【解析】
由于其中一名學生想要知道自己能否進入前3名,共有7名選手參加,故應根據中位數的意義分析.【詳解】由于總共有7個人,且他們的成績各不相同,第4的成績是中位數,要判斷是否進入前3名,故應知道中位數的多少.故選C.【點睛】此題主要考查統計的有關知識,主要包括平均數、中位數、眾數、方差的意義.反映數據集中程度的統計量有平均數、中位數、眾數、方差等,各有局限性,因此要對統計量進行合理的選擇和恰當的運用.5、C【解析】
根據題意,利用分類討論的數學思想可以得到l與直線y=﹣1交點的個數,從而可以解答本題.【詳解】∵拋物線l:y=﹣x2+bx+c(b,c為常數)的頂點D位于直線y=﹣2與x軸之間的區域,開口向下,∴當頂點D位于直線y=﹣1下方時,則l與直線y=﹣1交點個數為0,當頂點D位于直線y=﹣1上時,則l與直線y=﹣1交點個數為1,當頂點D位于直線y=﹣1上方時,則l與直線y=﹣1交點個數為2,故選C.【點睛】考查拋物線與x軸的交點、二次函數的性質,解答本題的關鍵是明確題意,利用函數的思想和分類討論的數學思想解答.6、B【解析】
根據乘積是1的兩個數叫做互為倒數解答.【詳解】解:∵×1=1∴的倒數是1.故選B.【點睛】本題考查了倒數的定義,是基礎題,熟記概念是解題的關鍵.7、C【解析】分析:根據根與系數的關系可得出α+β=-、αβ=-3,將其代入=中即可求出結論.詳解:∵α、β是一元二次方程3x2+2x-9=0的兩根,∴α+β=-,αβ=-3,∴===.故選C.點睛:本題考查了根與系數的關系,牢記兩根之和等于-、兩根之積等于是解題的關鍵.8、B【解析】
先將分母進行通分,化為(x+y)(x-y)的形式,分子乘上相應的分式,進行化簡.【詳解】【點睛】本題考查的是分式的混合運算,解題的關鍵就是熟練掌握運算規則.9、B【解析】
過點P作PE⊥OA于點E,根據角平分線上的點到角的兩邊的距離相等可得PE=PM,再根據兩直線平行,內錯角相等可得∠POM=∠OPN,根據三角形的一個外角等于與它不相鄰的兩個內角的和求出∠PNE=∠AOB,再根據直角三角形解答.【詳解】如圖,過點P作PE⊥OA于點E,∵OP是∠AOB的平分線,∴PE=PM,∵PN∥OB,∴∠POM=∠OPN,∴∠PNE=∠PON+∠OPN=∠PON+∠POM=∠AOB=45°,∴=.故選:B.【點睛】本題考查了角平分線上的點到角的兩邊距離相等的性質,直角三角形的性質,以及三角形的一個外角等于與它不相鄰的兩個內角的和,作輔助線構造直角三角形是解題的關鍵.10、B【解析】分析:由普查得到的調查結果比較準確,但所費人力、物力和時間較多,而抽樣調查得到的調查結果比較近似.詳解:A、調查范圍廣適合抽樣調查,故A不符合題意;B、適合普查,故B符合題意;C、調查范圍廣適合抽樣調查,故C不符合題意;D、調查范圍廣適合抽樣調查,故D不符合題意;故選:B.點睛:本題考查了抽樣調查和全面調查的區別,選擇普查還是抽樣調查要根據所要考查的對象的特征靈活選用,一般來說,對于具有破壞性的調查、無法進行普查、普查的意義或價值不大,應選擇抽樣調查,對于精確度要求高的調查,事關重大的調查往往選用普查.二、填空題(本大題共6個小題,每小題3分,共18分)11、【解析】根據題意先求出這組數據的平均數是:(3+3+4+5+5)÷5=4,再根據方差公式求出這組數據的方差為:×[(3–4)2+(3–4)2+(4–4)2+(5–4)2+(5–4)2]=.故答案為.12、1.【解析】
把無理方程轉化為整式方程即可解決問題.【詳解】兩邊平方得到:2x﹣1=1,解得:x=1,經檢驗:x=1是原方程的解.故答案為:1.【點睛】本題考查了無理方程,解題的關鍵是學會用轉化的思想思考問題,注意必須檢驗.13、或【解析】試題分析:AC===,因為矩形都相似,且每相鄰兩個矩形的相似比=,∴=2×1=2,=,===,...,==...===.故答案為.考點:1.相似多邊形的性質;2.勾股定理;3.規律型;4.矩形的性質;5.綜合題.14、1【解析】解:由圖象可知,AB+BC=6,AB+BC+CD=10,∴CD=4,根據題意可知,當P點運動到C點時,△PAD的面積最大,S△PAD=×AD×DC=8,∴AD=4,又∵S△ABD=×AB×AD=2,∴AB=1,∴當P點運動到BC中點時,△PAD的面積=×(AB+CD)×AD=1,故答案為1.15、1.【解析】試題分析:∵AD∥BE∥CF,∴,即,∴EF=1.故答案為1.考點:平行線分線段成比例.16、【解析】分析:根據分式有意義的條件是分母不為0,即可求解.詳解:由題意得:x-2≠0,即.故答案為點睛:本題考查了使函數有意義的自變量的取值范圍的確定.函數是整式型,自變量去全體實數;函數是分式型,自變量是使分母不為0的實數;根式型的函數的自變量去根號下的式子大于或等于0的實數;當函數關系式表示實際問題時,自變量不僅要使函數關系式有意義,還要使實際問題有意義.三、解答題(共8題,共72分)17、﹣1【解析】
直接利用負指數冪的性質以及絕對值的性質、特殊角的三角函數值分別化簡得出答案.【詳解】原式=(﹣1)﹣2×+2﹣4=﹣1﹣+2﹣4=﹣1.【點睛】此題主要考查了實數運算,正確化簡各數是解題關鍵.18、(1)畫圖見解析;(2)畫圖見解析,C2的坐標為(﹣6,4).【解析】試題分析:利用關于點對稱的性質得出的坐標進而得出答案;
利用關于原點位似圖形的性質得出對應點位置進而得出答案.試題解析:(1)△A1BC1如圖所示.(2)△A2B2C2如圖所示,點C2的坐標為(-6,4).19、從2015年到2017年,該地投入異地安置資金的年平均增長率為50%.【解析】
設年平均增長率為x,根據:2016年投入資金×(1+增長率)2=2018年投入資金,列出方程求解可得.【詳解】解:設該地投入異地安置資金的年平均增長率為x.根據題意得:1280(1+x)2=1280+1600.解得x1=0.5=50%,x2=-2.5(舍去),答:從2016年到2018年,該地投入異地安置資金的年平均增長率為50%.【點睛】本題考查了一元二次方程的應用,由題意準確找出相等關系并據此列出方程是解題的關鍵.20、(1)y=﹣;(1)點K的坐標為(,0);(2)點P的坐標為:(1+,1)或(1﹣,1)或(1+,2)或(1﹣,2).【解析】試題分析:(1)把A、C兩點坐標代入拋物線解析式可求得a、c的值,可求得拋物線解析;(1)可求得點C關于x軸的對稱點C′的坐標,連接C′N交x軸于點K,再求得直線C′K的解析式,可求得K點坐標;(2)過點E作EG⊥x軸于點G,設Q(m,0),可表示出AB、BQ,再證明△BQE≌△BAC,可表示出EG,可得出△CQE關于m的解析式,再根據二次函數的性質可求得Q點的坐標;(4)分DO=DF、FO=FD和OD=OF三種情況,分別根據等腰三角形的性質求得F點的坐標,進一步求得P點坐標即可.試題解析:(1)∵拋物線經過點C(0,4),A(4,0),∴,解得,∴拋物線解析式為y=﹣x1+x+4;(1)由(1)可求得拋物線頂點為N(1,),如圖1,作點C關于x軸的對稱點C′(0,﹣4),連接C′N交x軸于點K,則K點即為所求,設直線C′N的解析式為y=kx+b,把C′、N點坐標代入可得,解得,∴直線C′N的解析式為y=x-4,令y=0,解得x=,∴點K的坐標為(,0);(2)設點Q(m,0),過點E作EG⊥x軸于點G,如圖1,由﹣x1+x+4=0,得x1=﹣1,x1=4,∴點B的坐標為(﹣1,0),AB=6,BQ=m+1,又∵QE∥AC,∴△BQE≌△BAC,∴,即,解得EG=;∴S△CQE=S△CBQ﹣S△EBQ=(CO-EG)·BQ=(m+1)(4-)==-(m-1)1+2.又∵﹣1≤m≤4,∴當m=1時,S△CQE有最大值2,此時Q(1,0);(4)存在.在△ODF中,(ⅰ)若DO=DF,∵A(4,0),D(1,0),∴AD=OD=DF=1.又在Rt△AOC中,OA=OC=4,∴∠OAC=45°.∴∠DFA=∠OAC=45°.∴∠ADF=90°.此時,點F的坐標為(1,1).由﹣x1+x+4=1,得x1=1+,x1=1﹣.此時,點P的坐標為:P1(1+,1)或P1(1﹣,1);(ⅱ)若FO=FD,過點F作FM⊥x軸于點M.由等腰三角形的性質得:OM=OD=1,∴AM=2.∴在等腰直角△AMF中,MF=AM=2.∴F(1,2).由﹣x1+x+4=2,得x1=1+,x1=1﹣.此時,點P的坐標為:P2(1+,2)或P4(1﹣,2);(ⅲ)若OD=OF,∵OA=OC=4,且∠AOC=90°.∴AC=4.∴點O到AC的距離為1.而OF=OD=1<1,與OF≥1矛盾.∴在AC上不存在點使得OF=OD=1.此時,不存在這樣的直線l,使得△ODF是等腰三角形.綜上所述,存在這樣的直線l,使得△ODF是等腰三角形.所求點P的坐標為:(1+,1)或(1﹣,1)或(1+,2)或(1﹣,2).點睛:本題是二次函數綜合題,主要考查待定系數法、三角形全等的判定與性質、等腰三角形的性質等,能正確地利用數形結合思想、分類討論思想等進行解題是關鍵.21、(1)y=﹣(x+1)1;(1)點B(1,﹣1)不在這個函數的圖象上;(3)拋物線向左平移1個單位或平移5個單位函數,即可過點B;【解析】
(1)根據待定系數法即可得出二次函數的解析式;(1)代入B(1,-1)即可判斷;(3)根據題意設平移后的解析式為y=-(x+1+m)1,代入B的坐標,求得m的植即可.【詳解】解:(1)∵二次函數y=a(x+m)1的頂點坐標為(﹣1,0),∴m=1,∴二次函數y=a(x+1)1,把點A(﹣1,﹣)代入得a=﹣,則拋物線的解析式為:y=﹣(x+1)1.(1)把x=1代入y=﹣(x+1)1得y=﹣≠﹣1,所以,點B(1,﹣1)不在這個函數的圖象上;(3)根據題意設平移后的解析式為y=﹣(x+1+m)1,把B(1,﹣1)代入得﹣1=﹣(1+1+m)1,解得m=﹣1或﹣5,所以拋物線向左平移1個單位或平移5個單位函數,即可過點B.【點睛】本題考查了待定系數法求二次函數的解析式,二次函數圖象上點的坐標特征,二次函數的性質以及圖象與幾何變換.22、2.7米【解析】
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 新疆烏魯木齊第十三中學2024-2025學年初三3月模擬考試數學試題含解析
- 新疆烏魯木齊市四中2025屆高三下學期學習能力診斷化學試題含解析
- 新鄉醫學院三全學院《中學化學教學設計與技能訓練(一)》2023-2024學年第二學期期末試卷
- 2025至2031年中國禮品燈具行業投資前景及策略咨詢研究報告
- 2025至2031年中國粉末冶金摩擦片及結構件行業投資前景及策略咨詢研究報告
- 贛州市重點中學2024屆中考聯考數學試題含解析
- 2025年工廠安全培訓考試試題答案完美版
- 2025年新入職工入職安全培訓考試試題答案高清版
- 2024-2025項目安全培訓考試試題【預熱題】
- 2025年公司三級安全培訓考試試題含答案【完整版】
- 2024年黑龍江哈爾濱市中考英語真題卷及答案解析
- 【MOOC】道路交通安全-河海大學 中國大學慕課MOOC答案
- 人教版二年級上冊英語期中考試卷【3套】
- 2025年湖北省武漢市高考數學模擬試卷附答案解析
- 高中英語時態單選題100道及答案解析
- 【公開課】+紀念與象征-空間中的實體藝術+課件高中美術人美版(2019)美術鑒賞
- GB/T 44588-2024數據安全技術互聯網平臺及產品服務個人信息處理規則
- 物聯網傳感技術說課教學設計八年級上冊
- TSG ZF001-2006《安全閥安全技術監察規程》
- 2024-2030年中國隱私計算行業發展模式及戰略規劃分析研究報告
- 課件:《中華民族共同體概論》第四講 天下秩序與華夏共同體的演進(夏商周時期)
評論
0/150
提交評論