湖南省湘西土家族苗族自治州古丈縣2024屆中考數學五模試卷含解析_第1頁
湖南省湘西土家族苗族自治州古丈縣2024屆中考數學五模試卷含解析_第2頁
湖南省湘西土家族苗族自治州古丈縣2024屆中考數學五模試卷含解析_第3頁
湖南省湘西土家族苗族自治州古丈縣2024屆中考數學五模試卷含解析_第4頁
湖南省湘西土家族苗族自治州古丈縣2024屆中考數學五模試卷含解析_第5頁
已閱讀5頁,還剩21頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

湖南省湘西土家族苗族自治州古丈縣2024屆中考數學五模試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖,在直角坐標系中,有兩點A(6,3)、B(6,0).以原點O為位似中心,相似比為,在第一象限內把線段AB縮小后得到線段CD,則點C的坐標為()A.(2,1) B.(2,0) C.(3,3) D.(3,1)2.1.桌面上放置的幾何體中,主視圖與左視圖可能不同的是()A.圓柱B.正方體C.球D.直立圓錐3.某公園里鮮花的擺放如圖所示,第①個圖形中有3盆鮮花,第②個圖形中有6盆鮮花,第③個圖形中有11盆鮮花,……,按此規律,則第⑦個圖形中的鮮花盆數為()A.37 B.38 C.50 D.514.如圖,一次函數y1=x+b與一次函數y2=kx+4的圖象交于點P(1,3),則關于x的不等式x+b>kx+4的解集是()A.x>﹣2 B.x>0 C.x>1 D.x<15.關于x的不等式的解集為x>3,那么a的取值范圍為()A.a>3 B.a<3 C.a≥3 D.a≤36.下列各圖中,既可經過平移,又可經過旋轉,由圖形①得到圖形②的是()A. B. C. D.7.一個六邊形的六個內角都是120°(如圖),連續四條邊的長依次為1,3,3,2,則這個六邊形的周長是()A.13 B.14 C.15 D.168.如圖1,點P從△ABC的頂點B出發,沿B→C→A勻速運動到點A,圖2是點P運動時,線段BP的長度y隨時間x變化的關系圖象,其中M為曲線部分的最低點,則△ABC的面積是()A.10 B.12 C.20 D.249.如圖,點A、B、C在圓O上,若∠OBC=40°,則∠A的度數為()A.40° B.45° C.50° D.55°10.如圖,已知,那么下列結論正確的是()A. B. C. D.11.下列關于x的方程一定有實數解的是()A. B.C. D.12.今年我市計劃擴大城區綠地面積,現有一塊長方形綠地,它的短邊長為60m,若將短邊增長到長邊相等(長邊不變),使擴大后的棣地的形狀是正方形,則擴大后的綠地面積比原來增加1600,設擴大后的正方形綠地邊長為xm,下面所列方程正確的是()A.x(x-60)=1600B.x(x+60)=1600C.60(x+60)=1600D.60(x-60)=1600二、填空題:(本大題共6個小題,每小題4分,共24分.)13.△ABC的頂點都在方格紙的格點上,則sinA=_▲.14.如圖,在3×3的方格中,A、B、C、D、E、F分別位于格點上,從C、D、E、F四點中任取一點,與點A、B為頂點作三角形,則所作三角形為等腰三角形的概率是__.15.一個不透明口袋里裝有形狀、大小都相同的2個紅球和4個黑球,從中任意摸出一個球恰好是紅球的概率是____.16.方程的根是________.17.2018年5月13日,中國首艘國產航空母艦首次執行海上試航任務,其排水量超過6萬噸,將數60000用科學記數法表示應為_______________.18.二次根式在實數范圍內有意義,x的取值范圍是_____.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)如圖,在△ABC中,∠C=90°,∠BAC的平分線交BC于點D,點O在AB上,以點O為圓心,OA為半徑的圓恰好經過點D,分別交AC、AB于點E.F.試判斷直線BC與⊙O的位置關系,并說明理由;若BD=23,BF=2,求⊙O的半徑.20.(6分)如圖,在平行四邊形ABCD中,DB⊥AB,點E是BC邊的中點,過點E作EF⊥CD,垂足為F,交AB的延長線于點G.(1)求證:四邊形BDFG是矩形;(2)若AE平分∠BAD,求tan∠BAE的值.21.(6分)如圖,在等腰△ABC中,AB=BC,以AB為直徑的⊙O與AC相交于點D,過點D作DE⊥BC交AB延長線于點E,垂足為點F.(1)證明:DE是⊙O的切線;(2)若BE=4,∠E=30°,求由、線段BE和線段DE所圍成圖形(陰影部分)的面積,(3)若⊙O的半徑r=5,sinA=,求線段EF的長.22.(8分)已知:△ABC在坐標平面內,三個頂點的坐標分別為A(0,3),B(3,4),C(2,2).(正方形網格中,每個小正方形的邊長是1個單位長度)畫出△ABC向下平移4個單位得到的△A1B1C1,并直接寫出C1點的坐標;以點B為位似中心,在網格中畫出△A2BC2,使△A2BC2與△ABC位似,且位似比為2︰1,并直接寫出C2點的坐標及△A2BC2的面積.23.(8分)如圖,拋物線y=﹣x2+bx+c與x軸交于點A(﹣1,0)和點B,與y軸交于C(0,3),直線y=+m經過點C,與拋物線的另一交點為點D,點P是直線CD上方拋物線上的一個動點,過點P作PF⊥x軸于點F,交直線CD于點E,設點P的橫坐標為m.(1)求拋物線解析式并求出點D的坐標;(2)連接PD,△CDP的面積是否存在最大值?若存在,請求出面積的最大值;若不存在,請說明理由;(3)當△CPE是等腰三角形時,請直接寫出m的值.24.(10分)已知圓O的半徑長為2,點A、B、C為圓O上三點,弦BC=AO,點D為BC的中點,(1)如圖,連接AC、OD,設∠OAC=α,請用α表示∠AOD;(2)如圖,當點B為的中點時,求點A、D之間的距離:(3)如果AD的延長線與圓O交于點E,以O為圓心,AD為半徑的圓與以BC為直徑的圓相切,求弦AE的長.25.(10分)如圖1所示,點E在弦AB所對的優弧上,且BE為半圓,C是BE上的動點,連接CA、CB,已知AB=4cm,設B、C間的距離為xcm,點C到弦AB所在直線的距離為y1cm,A、C兩點間的距離為y2cm.小明根據學習函數的經驗,分別對函數y1、y2歲自變量x的變化而變化的規律進行了探究.下面是小明的探究過程,請補充完整.按照下表中自變量x的值進行取點、畫圖、測量,分別得到了y1、y2與x的幾組對應值:x/cm0123456y1/cm00.781.762.853.984.954.47y2/cm44.695.265.965.944.47(2)在同一平面直角坐標系xOy中,描出補全后的表中各組數值所對應的點(x,y1),(x,y2),并畫出函數y1、y2的圖象;結合函數圖象,解決問題:①連接BE,則BE的長約為cm.②當以A、B、C為頂點組成的三角形是直角三角形時,BC的長度約為cm.26.(12分)如圖,已知點C是∠AOB的邊OB上的一點,求作⊙P,使它經過O、C兩點,且圓心在∠AOB的平分線上.27.(12分)黃巖某校搬遷后,需要增加教師和學生的寢室數量,寢室有三類,分別為單人間(供一個人住宿),雙人間(供兩個人住宿),四人間(供四個人住宿).因實際需要,單人間的數量在20至30之間(包括20和30),且四人間的數量是雙人間的5倍.(1)若2018年學校寢室數為64個,以后逐年增加,預計2020年寢室數達到121個,求2018至2020年寢室數量的年平均增長率;(2)若三類不同的寢室的總數為121個,則最多可供多少師生住宿?

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、A【解析】

根據位似變換的性質可知,△ODC∽△OBA,相似比是,根據已知數據可以求出點C的坐標.【詳解】由題意得,△ODC∽△OBA,相似比是,∴,又OB=6,AB=3,∴OD=2,CD=1,∴點C的坐標為:(2,1),故選A.【點睛】本題考查的是位似變換,掌握位似變換與相似的關系是解題的關鍵,注意位似比與相似比的關系的應用.2、B【解析】試題分析:根據從正面看得到的視圖是主視圖,從左邊看得到的圖形是左視圖,從上面看得到的圖形是俯視圖,正方體主視圖與左視圖可能不同,故選B.考點:簡單幾何體的三視圖.3、D【解析】試題解析:第①個圖形中有盆鮮花,第②個圖形中有盆鮮花,第③個圖形中有盆鮮花,…第n個圖形中的鮮花盆數為則第⑥個圖形中的鮮花盆數為故選C.4、C【解析】試題分析:當x>1時,x+b>kx+4,即不等式x+b>kx+4的解集為x>1.故選C.考點:一次函數與一元一次不等式.5、D【解析】分析:先解第一個不等式得到x>3,由于不等式組的解集為x>3,則利用同大取大可得到a的范圍.詳解:解不等式2(x-1)>4,得:x>3,解不等式a-x<0,得:x>a,∵不等式組的解集為x>3,∴a≤3,故選D.點睛:本題考查了解一元一次不等式組:解一元一次不等式組時,一般先求出其中各不等式的解集,再求出這些解集的公共部分,利用數軸可以直觀地表示不等式組的解集.解集的規律:同大取大;同小取小;大小小大中間找;大大小小找不到.6、D【解析】A,B,C只能通過旋轉得到,D既可經過平移,又可經過旋轉得到,故選D.7、C【解析】

解:如圖所示,分別作直線AB、CD、EF的延長線和反向延長線使它們交于點G、H、I.因為六邊形ABCDEF的六個角都是120°,所以六邊形ABCDEF的每一個外角的度數都是60°.所以都是等邊三角形.所以所以六邊形的周長為3+1+4+2+2+3=15;故選C.8、B【解析】

根據圖象可知點P在BC上運動時,此時BP不斷增大,而從C向A運動時,BP先變小后變大,從而可求出BC與AC的長度.【詳解】解:根據圖象可知點P在BC上運動時,此時BP不斷增大,

由圖象可知:點P從B向C運動時,BP的最大值為5,即BC=5,

由于M是曲線部分的最低點,

∴此時BP最小,即BP⊥AC,BP=4,

∴由勾股定理可知:PC=3,

由于圖象的曲線部分是軸對稱圖形,

∴PA=3,

∴AC=6,

∴△ABC的面積為:×4×6=12.故選:B.【點睛】本題考查動點問題的函數圖象,解題關鍵是注意結合圖象求出BC與AC的長度,本題屬于中等題型.9、C【解析】

根據等腰三角形的性質和三角形內角和定理求得∠BOC=100°,再利用圓周角定理得到∠A=12【詳解】∵OB=OC,

∴∠OBC=∠OCB.

又∠OBC=40°,

∴∠OBC=∠OCB=40°,

∴∠BOC=180°-2×40°=100°,

∴∠A=12【點睛】考查了圓周角定理.在同圓或等圓中,一條弧所對的圓周角是它所對的圓心角的一半.10、A【解析】

已知AB∥CD∥EF,根據平行線分線段成比例定理,對各項進行分析即可.【詳解】∵AB∥CD∥EF,∴.故選A.【點睛】本題考查平行線分線段成比例定理,找準對應關系,避免錯選其他答案.11、A【解析】

根據一元二次方程根的判別式、二次根式有意義的條件、分式方程的增根逐一判斷即可得.【詳解】A.x2-mx-1=0中△=m2+4>0,一定有兩個不相等的實數根,符合題意;

B.ax=3中當a=0時,方程無解,不符合題意;

C.由可解得不等式組無解,不符合題意;

D.有增根x=1,此方程無解,不符合題意;

故選A.【點睛】本題主要考查方程的解,解題的關鍵是掌握一元二次方程根的判別式、二次根式有意義的條件、分式方程的增根.12、A【解析】試題分析:根據題意可得擴建的部分相當于一個長方形,這個長方形的長和寬分別為x米和(x-60)米,根據長方形的面積計算法則列出方程.考點:一元二次方程的應用.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、【解析】

在直角△ABD中利用勾股定理求得AD的長,然后利用正弦的定義求解.【詳解】在直角△ABD中,BD=1,AB=2,則AD===,則sinA===.故答案是:.14、.【解析】

解:根據從C、D、E、F四個點中任意取一點,一共有4種可能,選取D、C、F時,所作三角形是等腰三角形,故P(所作三角形是等腰三角形)=;故答案為.【點睛】本題考查概率的計算及等腰三角形的判定,熟記等要三角形的性質及判定方法和概率的計算公式是本題的解題關鍵.15、.【解析】

根據隨機事件概率大小的求法,找準兩點:①符合條件的情況數目;②全部情況的總數.二者的比值就是其發生的概率的大小.【詳解】∵一個不透明口袋里裝有形狀、大小都相同的2個紅球和4個黑球,∴從中任意摸出一個球恰好是紅球的概率為:,故答案為.【點睛】本題考查了概率公式的應用.注意概率=所求情況數與總情況數之比.16、x=2【解析】分析:解此方程首先要把它化為我們熟悉的方程(一元二次方程),解新方程,檢驗是否符合題意,即可求得原方程的解.詳解:據題意得:2+2x=x2,∴x2﹣2x﹣2=0,∴(x﹣2)(x+1)=0,∴x1=2,x2=﹣1.∵≥0,∴x=2.故答案為:2.點睛:本題考查了學生綜合應用能力,解方程時要注意解題方法的選擇,在求值時要注意解的檢驗.17、【解析】【分析】科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數.確定n的值時,要看把原數變成a時,小數點移動了多少位,n的絕對值與小數點移動的位數相同.當原數絕對值>1時,n是正數;當原數的絕對值<1時,n是負數.【詳解】60000小數點向左移動4位得到6,所以60000用科學記數法表示為:6×1,故答案為:6×1.【點睛】本題考查科學記數法的表示方法.科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數,表示時關鍵要正確確定a的值以及n的值.18、x≤1【解析】

根據二次根式有意義的條件列出不等式,解不等式即可.【詳解】解:由題意得,1﹣x≥0,解得,x≤1,故答案為x≤1.【點睛】本題考查的是二次根式有意義的條件,掌握二次根式中的被開方數必須是非負數是解題的關鍵.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)相切,理由見解析;(1)1.【解析】

(1)求出OD//AC,得到OD⊥BC,根據切線的判定得出即可;(1)根據勾股定理得出方程,求出方程的解即可.【詳解】(1)直線BC與⊙O的位置關系是相切,理由是:連接OD,∵OA=OD,∴∠OAD=∠ODA,∵AD平分∠CAB,∴∠OAD=∠CAD,∴∠ODA=∠CAD,∴OD∥AC,∵∠C=90°,∴∠ODB=90°,即OD⊥BC,∵OD為半徑,∴直線BC與⊙O的位置關系是相切;(1)設⊙O的半徑為R,則OD=OF=R,在Rt△BDO中,由勾股定理得:OB2=BD2+OD2,即(R+1)2=(13)2+R2,解得:R=1,即⊙O的半徑是1.【點睛】此題考查切線的判定,勾股定理,解題關鍵在于求出OD⊥BC.20、(1)見解析;(2)【解析】

(1)根據矩形的判定證明即可;(2)根據平行四邊形的性質和等邊三角形的性質解答即可.【詳解】證明:(1)∵BD⊥AB,EF⊥CD,∴∠ABD=90°,∠EFD=90°,根據題意,在?ABCD中,AB∥CD,∴∠BDC=∠ABD=90°,∴BD∥GF,∴四邊形BDFG為平行四邊形,∵∠BDC=90°,∴四邊形BDFG為矩形;(2)∵AE平分∠BAD,∴∠BAE=∠DAE,∵AD∥BC,∴∠BEA=∠DAE,∴∠BAE=∠BEA,∴BA=BE,∵在Rt△BCD中,點E為BC邊的中點,∴BE=ED=EC,∵在?ABCD中,AB=CD,∴△ECD為等邊三角形,∠C=60°,∴,∴.【點睛】本題考查了矩形的判定、等邊三角形的判定和性質,根據平行四邊形的性質和等邊三角形的性質解答是解題關鍵.21、(1)見解析(2)8(3)【解析】分析:(1)連接BD、OD,由AB=BC及∠ADB=90°知AD=CD,根據AO=OB知OD是△ABC的中位線,據此知OD∥BC,結合DE⊥BC即可得證;(2)設⊙O的半徑為x,則OB=OD=x,在Rt△ODE中由sinE=求得x的值,再根據S陰影=S△ODE-S扇形ODB計算可得答案.(3)先證Rt△DFB∽Rt△DCB得,據此求得BF的長,再證△EFB∽△EDO得,據此求得EB的長,繼而由勾股定理可得答案.詳解:(1)如圖,連接BD、OD,∵AB是⊙O的直徑,∴∠BDA=90°,∵BA=BC,∴AD=CD,又∵AO=OB,∴OD∥BC,∵DE⊥BC,∴OD⊥DE,∴DE是⊙O的切線;(2)設⊙O的半徑為x,則OB=OD=x,在Rt△ODE中,OE=4+x,∠E=30°,∴,解得:x=4,∴DE=4,S△ODE=×4×4=8,S扇形ODB=,則S陰影=S△ODE-S扇形ODB=8-;(3)在Rt△ABD中,BD=ABsinA=10×=2,∵DE⊥BC,∴Rt△DFB∽Rt△DCB,∴,即,∴BF=2,∵OD∥BC,∴△EFB∽△EDO,∴,即,∴EB=,∴EF=.點睛:本題主要考查圓的綜合問題,解題的關鍵是掌握圓的有關性質、中位線定理、三角函數的應用及相似三角形的判定與性質等知識點.22、解:(1)如圖,△A1B1C1即為所求,C1(2,-2).(2)如圖,△A2BC2即為所求,C2(1,0),△A2BC2的面積:10【解析】

分析:(1)根據網格結構,找出點A、B、C向下平移4個單位的對應點、、的位置,然后順次連接即可,再根據平面直角坐標系寫出點的坐標;(2)延長BA到使A=AB,延長BC到,使C=BC,然后連接A2C2即可,再根據平面直角坐標系寫出點的坐標,利用△B所在的矩形的面積減去四周三個小直角三角形的面積,列式計算即可得解.本題解析:(1)如圖,△A1B1C1即為所求,C1(2,-2)(2)如圖,△B為所求,(1,0),△B的面積:6×4?×2×6?×2×4?×2×4=24?6?4?4=24?14=10,23、(1)y=﹣x2+2x+3,D點坐標為();(2)當m=時,△CDP的面積存在最大值,最大值為;(3)m的值為或或.【解析】

(1)利用待定系數法求拋物線解析式和直線CD的解析式,然后解方程組得D點坐標;

(2)設P(m,-m2+2m+3),則E(m,-m+3),則PE=-m2+m,利用三角形面積公式得到S△PCD=××(-m2+m)=-m2+m,然后利用二次函數的性質解決問題;

(3)討論:當PC=PE時,m2+(-m2+2m+3-3)2=(-m2+m)2;當CP=CE時,m2+(-m2+2m+3-3)2=m2+(-m+3-3)2;當EC=EP時,m2+(-m+3-3)2=(-m2+m)2,然后分別解方程即可得到滿足條件的m的值.【詳解】(1)把A(﹣1,0),C(0,3)分別代入y=﹣x2+bx+c得,解得,∴拋物線的解析式為y=﹣x2+2x+3;把C(0,3)代入y=﹣x+n,解得n=3,∴直線CD的解析式為y=﹣x+3,解方程組,解得或,∴D點坐標為(,);(2)存在.設P(m,﹣m2+2m+3),則E(m,﹣m+3),∴PE=﹣m2+2m+3﹣(﹣m+3)=﹣m2+m,∴S△PCD=??(﹣m2+m)=﹣m2+m=﹣(m﹣)2+,當m=時,△CDP的面積存在最大值,最大值為;(3)當PC=PE時,m2+(﹣m2+2m+3﹣3)2=(﹣m2+m)2,解得m=0(舍去)或m=;當CP=CE時,m2+(﹣m2+2m+3﹣3)2=m2+(﹣m+3﹣3)2,解得m=0(舍去)或m=(舍去)或m=;當EC=EP時,m2+(﹣m+3﹣3)2=(﹣m2+m)2,解得m=(舍去)或m=,綜上所述,m的值為或或.【點睛】本題考核知識點:二次函數的綜合應用.解題關鍵點:靈活運用二次函數性質,運用數形結合思想.24、(1);(2);(3)【解析】

(1)連接OB、OC,可證△OBC是等邊三角形,根據垂徑定理可得∠DOC等于30°,OA=OC可得∠ACO=∠CAO=α,利用三角形的內角和定理即可表示出∠AOD的值.(2)連接OB、OC,可證△OBC是等邊三角形,根據垂徑定理可得∠DOB等于30°,因為點D為BC的中點,則∠AOB=∠BOC=60°,所以∠AOD等于90°,根據OA=OB=2,在直角三角形中用三角函數及勾股定理即可求得OD、AD的長.(3)分兩種情況討論:兩圓外切,兩圓內切.先根據兩圓相切時圓心距與兩圓半徑的關系,求出AD的長,再過O點作AE的垂線,利用勾股定理列出方程即可求解.【詳解】(1)如圖1:連接OB、OC.∵BC=AO∴OB=OC=BC∴△OBC是等邊三角形∴∠BOC=60°∵點D是BC的中點∴∠BOD=∵OA=OC∴=α∴∠AOD=180°-α-α-=150°-2α(2)如圖2:連接OB、OC、OD.由(1)可得:△OBC是等邊三角形,∠BOD=∵OB=2,∴OD=OB?cos=∵B為的中點,∴∠AOB=∠BOC=60°∴∠AOD=90°根據勾股定理得:AD=(3)①如圖3.圓O與圓D相內切時:連接OB、OC,過O點作OF⊥AE∵BC是直徑,D是BC的中點∴以BC為直徑的圓的圓心為D點由(2)可得:OD=,圓D的半徑為1∴AD=設AF=x在Rt△AFO和Rt△DOF中,即解得:∴AE=②如圖4.圓O與圓D相外切時:連接OB、OC,過O點作OF⊥AE∵BC是直徑,D是BC的中點∴以BC為直徑的圓的圓心為D點由(2)可得:OD=,圓D的半徑為1∴AD=在Rt△AFO和Rt△DOF中,即解得:∴AE=【點睛】本題主要考查圓的相關知識:垂徑定理,圓與圓相切的條件,關鍵是能靈活運用垂徑定理和勾股定理相結合思考問題,另外需注意圓相切要分內切與外切兩種情況.25、(1)詳見解析;(2)詳見解析;(3)①6;②6或4.1.【解析】

(1)由題意得出BC=3cm時,CD=2.85cm,從點C與點B重合開始,一直到BC=4,CD、AC隨著BC的增大而增大,則CD一直與AB的延長線相交,由勾股定理得出BD=BC2-CD2≈0.9367(cm),得出AD=AB(2)描出補全后的表中各組數值所對應的點(x,y1),(x,y2),畫出函數y1、y2的圖象即可;(3)①∵BC=6時,CD=AC=4.1,即點C與點E重合,CD與AC重合,BC為直徑,得出BE=BC=6即可;②分兩種情況:當∠CAB=90°時,AC=CD,即圖象y1與y2的交點,由圖象可得:BC=6;當∠CBA=90°時,BC=AD,由圓的對稱性與∠CAB=90°時對稱,AC=6,由圖象可得:BC=4.1.【詳解】(1)由表中自變量x的值進行取點、畫圖、測量,分別得到了y1、y2與x的幾組對應值知:BC=3cm時,CD=2.85cm,從點C與點B重合開始,一直到BC=4,CD、AC隨著BC的增大而增大,則CD一直與AB的延長線相交,如圖1所示:∵CD⊥AB,∴BD=BC2-∴AD=AB+BD=4+0.9367=4.9367(cm),∴AC=CD2補充完整如下表:(2)描出補全后的表中各組數值所對應的點(x,y1),(x,y2),畫出函數y1、y2的圖象如圖2所示:(3)①∵BC=6cm時,CD=AC=4.1

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論