




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
8.2整式的乘法第4課時1.掌握多項式除以單項式的法則,理解除法運算的算理;2.能熟練運用多項式除以單項式的法則計算,并能解決一些實際問題;3.在經歷探索多項式除以單項式的法則的過程中,讓學生感覺運算律是運算的通性,是獲得運算法則的基礎,感受轉化思想和方法;4.讓學生主動參與到探索過程中,發展有條理的思考及表達能力.學習目標
多項式除以單項式復習回顧應用新知創設情境鞏固新知課堂小結布置作業探究新知計算:(1)(10a4b3c)÷(5a3b)=
;(2)(3x3y2)÷(xy)=
;(3)12a3b4÷(4a3)=
;(4)27x2y÷(?3xy)=
.搶答商式系數·同底的冪·被除式里單獨有的冪底數不變,指數相減.保留作為商的一個因式.2ab2c3x2y3b4?9x創設情境應用新知鞏固新知課堂小結布置作業探究新知思考1.填空
:a÷b=
.2.如何計算:(a+b
c)÷m?轉化你能利用上述的方法計算嗎?(a+b
c)÷m討論嘗試歸納多項式除以單項式的運算法則.單項式除以單項式創設情境應用新知鞏固新知課堂小結布置作業探究新知多項式除以單項式
多項式除以單項式,先把這個多項式的每一項除以這個單項式,再把所得的商相加.(28x3y
14x2y27x)7x示例:歸納多項式除以單項式單項式除以單項式轉化
28x3y7x
14x2y27x7x7x
4x2y
2xy21探究新知創設情境鞏固新知課堂小結布置作業應用新知典型例題例1計算:
(1)(20a24a)÷4a;(2)(20x2y12xy2+8xy)÷(6xy);
(3)[6xy2(x23xy)+(3xy)2]÷3x2y2.(1)(20a24a)÷4a解:
20a2÷4a4a÷4a5a1(2)(20x2y12xy2+8xy)÷(6xy)
20x2y÷(6xy)12xy2÷(6xy)+8xy÷(6xy)
4x+2y在多項式除以單項式的運算中可以先定符號,再計算單項式的商探究新知創設情境鞏固新知課堂小結布置作業應用新知典型例題例1計算:
(1)(20a24a)÷4a;(2)(20x2y12xy2+8xy)÷(6xy);
(3)[6xy2(x23xy)+(3xy)2]÷3x2y2.(3)[6xy2(x23xy)+(3xy)2]÷3x2y2[6x3y218x2y3+8x2y2]÷3x2y2x6y+3.解:探究新知應用新知課堂小結布置作業鞏固新知創設情境隨堂練習搶答1.計算:
(1)x5y
x2
.
(2)8m2n2
2m2n
.
(3)a4b2c
3a2b
.x3y4n
a2bc
(4)(a2
a)
a
.
(5)(6xy5x)
x
.
(6)(3m32m2
m)
m
.6y53m22m1a1(1)多項式除以單項式,被除式里有幾項,商應該也有幾項;(2)多項式的各項包含它前面的符號,要注意符號的變化.探究新知應用新知課堂小結布置作業鞏固新知創設情境隨堂練習2.計算(1)(6a2b+3a)÷a;(2)(4x3y2
x2y2)÷(2x2y);(3)(20m4n3
12m3n2+3m2n)÷(4m2n);(4)[15(a+b)39(a+b)2]÷3(a+b)2.搶答解:(1)(6a2b+3a)÷a;=6a2b÷a+3a÷a=6ab+3(2)(4x3y2
x2y2)÷(2x2y)=4x3y2÷(2x2y)x2y2÷(2x2y)=2xy+探究新知應用新知課堂小結布置作業鞏固新知創設情境隨堂練習2.計算(1)(6a2b+3a)÷a;(2)(4x3y2
x2y2)÷(2x2y);(3)(20m4n3
12m3n2+3m2n)÷(4m2n);(4)[15(a+b)39(a+b)2]÷3(a+b)2.搶答解:(3)(20m4n312m3n2+3m2n)÷(4m2n)=20m4n3÷(4m2n)12m3n2÷(4m2n)+3m2n÷(4m2n)=5m2n23mn探究新知應用新知課堂小結布置作業鞏固新知創設情境隨堂練習2.計算(1)(6a2b+3a)÷a;(2)(4x3y2
x2y2)÷(2x2y);(3)(20m4n3
12m3n2+3m2n)÷(4m2n);(4)[15(a+b)39(a+b)2]÷3(a+b)2.搶答解:(4)[15(a+b)39(a+b)2]÷3(a+b)2=[15(a+b)3÷3(a+b)2][9(a+b)2÷3(a+b)2]=5(a+b)3=5a+5b3探究新知應用新知課堂小結布置作業鞏固新知創設情境隨堂練習3.已知7x5y3與一個多項式的積為28x7y398x6y521x5y5,則這個多項式為()A.
4x23y2B.4x2y3xy2C.4x2
3y214xy2D.4x23y27xy3解:
(28x7y398x6y5
21x5y5)
7x5y3
28x7y3
7x5y398x6y5
7x5y321x5y5
7x5y3
4x214xy23y2多項式除以單項式是單項式乘多項式的逆運算,因此可用單項式乘多項式檢驗多項式除以單項式的結果.C探究新知應用新知課堂小結布置作業鞏固新知創設情境隨堂練習4.計算:
(1)(4a3b6a2b2
ab2)(2ab)(2)(3x2y
xy2
xy)(xy)解:(1)原式
4a3b
(2ab)6a2b2
(2ab)ab2
(2ab)
6x2y1
2a23ab
b(2)原式
(3x2y
xy2
xy)(xy)
3x2y(xy)xy2(xy)xy
(xy)探究新知應用新知課堂小結布置作業鞏固新知創設情境隨堂練習(★拓展)5.已知A2x,B是多項式,在計算B
A時,小馬虎同學把B
A看成了B
A,結果得x2
x,求B
A.解:由題意得:B
2x
x2
x
根據乘除互為逆運算可得
(x2
x)·2x
B
即:B2x32x2
故B
A
2x3
2x22x探究新知應用新
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 成都體育學院《舞臺化妝與造型Ⅰ》2023-2024學年第二學期期末試卷
- 唐山師范學院《建筑力學(三)》2023-2024學年第二學期期末試卷
- 沈陽體育學院《軟件應用系統設計》2023-2024學年第二學期期末試卷
- 云南體育運動職業技術學院《網頁設計與制作實驗》2023-2024學年第二學期期末試卷
- 遼河石油職業技術學院《大學化學類》2023-2024學年第二學期期末試卷
- 新疆理工學院《計算機網絡技術及醫學應用》2023-2024學年第二學期期末試卷
- 煙臺理工學院《世界平面設計史》2023-2024學年第二學期期末試卷
- 廣西自然資源職業技術學院《住宅設計原理》2023-2024學年第二學期期末試卷
- 陽泉師范高等專科學校《戲劇工作坊》2023-2024學年第二學期期末試卷
- 廈門海洋職業技術學院《材料數理基礎》2023-2024學年第二學期期末試卷
- 養老護理員初級試題庫含參考答案
- 基于云計算的數據中心設計與運維
- 公務用車規范和管理
- 配料投料操作流程
- 2025年社區居委會試題及答案
- 中西醫結合內科學之循環系統疾病知到課后答案智慧樹章節測試答案2025年春湖南中醫藥大學
- TCHSA 088-2024 口腔頜面修復中三維面部掃描臨床應用指南
- SMT設備安全培訓材料
- 深度解析雙十一消費行為
- 北師大版八年級數學上冊一次函數《一次函數中的三角形面積 》教學課件
- 科技企業研發流程的精益化管理
評論
0/150
提交評論