廣東省深圳市光明新區市級名校2023-2024學年中考猜題數學試卷含解析_第1頁
廣東省深圳市光明新區市級名校2023-2024學年中考猜題數學試卷含解析_第2頁
廣東省深圳市光明新區市級名校2023-2024學年中考猜題數學試卷含解析_第3頁
廣東省深圳市光明新區市級名校2023-2024學年中考猜題數學試卷含解析_第4頁
廣東省深圳市光明新區市級名校2023-2024學年中考猜題數學試卷含解析_第5頁
已閱讀5頁,還剩14頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

廣東省深圳市光明新區市級名校2023-2024學年中考猜題數學試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.下列天氣預報中的圖標,其中既是軸對稱圖形又是中心對稱圖形的是()A. B. C. D.2.已知a<1,點A(x1,﹣2)、B(x2,4)、C(x3,5)為反比例函數圖象上的三點,則下列結論正確的是()A.x1>x2>x3 B.x1>x3>x2 C.x3>x1>x2 D.x2>x3>x13.如圖,由矩形和三角形組合而成的廣告牌緊貼在墻面上,重疊部分(陰影)的面積是4m2,廣告牌所占的面積是30m2(厚度忽略不計),除重疊部分外,矩形剩余部分的面積比三角形剩余部分的面積多2m2,設矩形面積是xm2,三角形面積是ym2,則根據題意,可列出二元一次方程組為()A. B. C. D.4.下列各數中,最小的數是A. B. C.0 D.5.如圖是一個正方體的表面展開圖,如果對面上所標的兩個數互為相反數,那么圖中的值是().A. B. C. D.6.如圖1、2、3分別表示甲、乙、丙三人由A地到B地的路線圖,已知甲的路線為:A→C→B;乙的路線為:A→D→E→F→B,其中E為AB的中點;丙的路線為:A→I→J→K→B,其中J在AB上,且AJ>JB.若符號[→]表示[直線前進],則根據圖1、圖2、圖3的數據,判斷三人行進路線長度的大小關系為()A.甲=乙=丙 B.甲<乙<丙 C.乙<丙<甲 D.丙<乙<甲7.已知關于x的一元二次方程mx2+2x-1=0有兩個不相等的實數根,則m的取值范圍是().A.m>-1且m≠0 B.m<1且m≠0 C.m<-1 D.m>18.已知∠BAC=45。,一動點O在射線AB上運動(點O與點A不重合),設OA=x,如果半徑為1的⊙O與射線AC有公共點,那么x的取值范圍是()A.0<x≤1 B.1≤x< C.0<x≤ D.x>9.如圖是由兩個小正方體和一個圓錐體組成的立體圖形,其主視圖是()A. B. C. D.10.如圖,在中,,將折疊,使點落在邊上的點處,為折痕,若,則的值為()A. B. C. D.二、填空題(本大題共6個小題,每小題3分,共18分)11.已知點P(1,2)關于x軸的對稱點為P′,且P′在直線y=kx+3上,把直線y=kx+3的圖象向上平移2個單位,所得的直線解析式為.12.已知,在Rt△ABC中,∠C=90°,AC=9,BC=12,點D、E分別在邊AC、BC上,且CD:CE=3︰1.將△CDE繞點D順時針旋轉,當點C落在線段DE上的點F處時,BF恰好是∠ABC的平分線,此時線段CD的長是________.13.在△ABC中,AB=13cm,AC=10cm,BC邊上的高為11cm,則△ABC的面積為______cm1.14.雙曲線、在第一象限的圖像如圖,過y2上的任意一點A,作x軸的平行線交y1于B,交y軸于C,過A作x軸的垂線交y1于D,交x軸于E,連結BD、CE,則=.15.在函數y=xx16.如圖,將一對直角三角形卡片的斜邊AC重合擺放,直角頂點B,D在AC的兩側,連接BD,交AC于點O,取AC,BD的中點E,F,連接EF.若AB=12,BC=5,且AD=CD,則EF的長為_____.三、解答題(共8題,共72分)17.(8分)某學校2017年在某商場購買甲、乙兩種不同足球,購買甲種足球共花費2000元,購買乙種足球共花費1400元,購買甲種足球數量是購買乙種足球數量的2倍.且購買一個乙種足球比購買一個甲種足球多花20元;(1)求購買一個甲種足球、一個乙種足球各需多少元;(2)2018年這所學校決定再次購買甲、乙兩種足球共50個.恰逢該商場對兩種足球的售價進行調整,甲種足球售價比第一次購買時提高了10%,乙種足球售價比第一次購買時降低了10%.如果此次購買甲、乙兩種足球的總費用不超過2910元,那么這所學校最多可購買多少個乙種足球?18.(8分)如圖,在四邊形ABCD中,點E是對角線BD上的一點,EA⊥AB,EC⊥BC,且EA=EC.求證:AD=CD.19.(8分)如圖,AC=DC,BC=EC,∠ACD=∠BCE.求證:∠A=∠D.20.(8分)如圖,在△ABC中,∠BAC=90°,AD⊥BC于點D,BF平分∠ABC交AD于點E,交AC于點F,求證:AE=AF.21.(8分)已知AB是⊙O的直徑,弦CD⊥AB于H,過CD延長線上一點E作⊙O的切線交AB的延長線于F,切點為G,連接AG交CD于K.(1)如圖1,求證:KE=GE;(2)如圖2,連接CABG,若∠FGB=∠ACH,求證:CA∥FE;(3)如圖3,在(2)的條件下,連接CG交AB于點N,若sinE=,AK=,求CN的長.22.(10分)某同學報名參加校運動會,有以下5個項目可供選擇:徑賽項目:100m,200m,分別用、、表示;田賽項目:跳遠,跳高分別用、表示.該同學從5個項目中任選一個,恰好是田賽項目的概率為______;該同學從5個項目中任選兩個,利用樹狀圖或表格列舉出所有可能出現的結果,并求恰好是一個田賽項目和一個徑賽項目的概率.23.(12分)某公司銷售一種新型節能電子小產品,現準備從國內和國外兩種銷售方案中選擇一種進行銷售:①若只在國內銷售,銷售價格y(元/件)與月銷量x(件)的函數關系式為y=-x+150,成本為20元/件,月利潤為W內(元);②若只在國外銷售,銷售價格為150元/件,受各種不確定因素影響,成本為a元/件(a為常數,10≤a≤40),當月銷量為x(件)時,每月還需繳納x2元的附加費,月利潤為W外(元).(1)若只在國內銷售,當x=1000(件)時,y=(元/件);(2)分別求出W內、W外與x間的函數關系式(不必寫x的取值范圍);(3)若在國外銷售月利潤的最大值與在國內銷售月利潤的最大值相同,求a的值.24.如圖,在Rt△ABC中,∠ACB=90°,CD是斜邊AB上的高(1)△ACD與△ABC相似嗎?為什么?(2)AC2=AB?AD成立嗎?為什么?

參考答案一、選擇題(共10小題,每小題3分,共30分)1、A【解析】

根據軸對稱圖形與中心對稱圖形的概念求解.【詳解】解:A、是軸對稱圖形,也是中心對稱圖形,符合題意;B、是軸對稱圖形,不是中心對稱圖形,不合題意;C、不是軸對稱圖形,也不是中心對稱圖形,不合題意;D、不是軸對稱圖形,不是中心對稱圖形,不合題意.故選:A.【點睛】此題主要考查了中心對稱圖形與軸對稱圖形的概念,軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分折疊后可重合,中心對稱圖形是要尋找對稱中心,旋轉180度后兩部分重合.2、B【解析】

根據的圖象上的三點,把三點代入可以得到x1=﹣,x1=,x3=,在根據a的大小即可解題【詳解】解:∵點A(x1,﹣1)、B(x1,4)、C(x3,5)為反比例函數圖象上的三點,∴x1=﹣,x1=,x3=,∵a<1,∴a﹣1<0,∴x1>x3>x1.故選B.【點睛】此題主要考查一次函數圖象與系數的關系,解題關鍵在于把三點代入,在根據a的大小來判斷3、A【解析】

根據題意找到等量關系:①矩形面積+三角形面積﹣陰影面積=30;②(矩形面積﹣陰影面積)﹣(三角形面積﹣陰影面積)=4,據此列出方程組.【詳解】依題意得:.故選A.【點睛】考查了由實際問題抽象出二元一次方程組.根據實際問題中的條件列方程組時,要注意抓住題目中的一些關鍵性詞語,找出等量關系,列出方程組.4、A【解析】

應明確在數軸上,從左到右的順序,就是數從小到大的順序,據此解答.【詳解】解:因為在數軸上-3在其他數的左邊,所以-3最小;故選A.【點睛】此題考負數的大小比較,應理解數字大的負數反而小.5、D【解析】

根據正方體平面展開圖的特征得出每個相對面,再由相對面上的兩個數互為相反數可得出x的值.【詳解】解:“3”與“-3”相對,“y”與“-2”相對,“x”與“-8”相對,故x=8,故選D.【點睛】本題主要考查了正方體相對面上的文字,解決本題的關鍵是要熟練掌握正方體展開圖的特征.6、A【解析】分析:由角的度數可以知道2、3中的兩個三角形的對應邊都是平行的,所以圖2,圖3中的三角形都和圖1中的三角形相似.而且圖2三角形全等,圖3三角形相似.詳解:根據以上分析:所以圖2可得AE=BE,AD=EF,DE=BE.∵AE=BE=AB,∴AD=EF=AC,DE=BE=BC,∴甲=乙.圖3與圖1中,三個三角形相似,所以====.∵AJ+BJ=AB,∴AI+JK=AC,IJ+BK=BC,∴甲=丙.∴甲=乙=丙.故選A.點睛:本題考查了的知識點是平行四邊形的性質,解答本題的關鍵是利用相似三角形的平移,求得線段的關系.7、A【解析】

∵一元二次方程mx2+2x-1=0有兩個不相等的實數根,∴m≠0,且22-4×m×(﹣1)>0,解得:m>﹣1且m≠0.故選A.【點睛】本題考查一元二次方程ax2+bx+c=0(a≠0)根的判別式:(1)當△=b2﹣4ac>0時,方程有兩個不相等的實數根;(2)當△=b2﹣4ac=0時,方程有有兩個相等的實數根;(3)當△=b2﹣4ac<0時,方程沒有實數根.8、C【解析】如下圖,設⊙O與射線AC相切于點D,連接OD,∴∠ADO=90°,∵∠BAC=45°,∴△ADO是等腰直角三角形,∴AD=DO=1,∴OA=,此時⊙O與射線AC有唯一公共點點D,若⊙O再向右移動,則⊙O與射線AC就沒有公共點了,∴x的取值范圍是.故選C.9、B【解析】主視圖是從正面看得到的視圖,從正面看上面圓錐看見的是:三角形,下面兩個正方體看見的是兩個正方形.故選B.10、B【解析】

根據折疊的性質可知AE=DE=3,然后根據勾股定理求CD的長,然后利用正弦公式進行計算即可.【詳解】解:由折疊性質可知:AE=DE=3∴CE=AC-AE=4-3=1在Rt△CED中,CD=故選:B【點睛】本題考查折疊的性質,勾股定理解直角三角形及正弦的求法,掌握公式正確計算是本題的解題關鍵.二、填空題(本大題共6個小題,每小題3分,共18分)11、y=﹣1x+1.【解析】

由對稱得到P′(1,﹣2),再代入解析式得到k的值,再根據平移得到新解析式.【詳解】∵點P(1,2)關于x軸的對稱點為P′,∴P′(1,﹣2),∵P′在直線y=kx+3上,∴﹣2=k+3,解得:k=﹣1,則y=﹣1x+3,∴把直線y=kx+3的圖象向上平移2個單位,所得的直線解析式為:y=﹣1x+1.故答案為y=﹣1x+1.考點:一次函數圖象與幾何變換.12、2【解析】分析:設CD=3x,則CE=1x,BE=12﹣1x,依據∠EBF=∠EFB,可得EF=BE=12﹣1x,由旋轉可得DF=CD=3x,再根據Rt△DCE中,CD2+CE2=DE2,即可得到(3x)2+(1x)2=(3x+12﹣1x)2,進而得出CD=2.詳解:如圖所示,設CD=3x,則CE=1x,BE=12﹣1x.∵=,∠DCE=∠ACB=90°,∴△ACB∽△DCE,∴∠DEC=∠ABC,∴AB∥DE,∴∠ABF=∠BFE.又∵BF平分∠ABC,∴∠ABF=∠CBF,∴∠EBF=∠EFB,∴EF=BE=12﹣1x,由旋轉可得DF=CD=3x.在Rt△DCE中,∵CD2+CE2=DE2,∴(3x)2+(1x)2=(3x+12﹣1x)2,解得x1=2,x2=﹣3(舍去),∴CD=2×3=2.故答案為2.點睛:本題考查了相似三角形的判定與性質,勾股定理以及旋轉的性質,解題時注意:對應點到旋轉中心的距離相等;對應點與旋轉中心所連線段的夾角等于旋轉角;旋轉前、后的圖形全等.13、2或2.【解析】試題分析:分兩種情況討論:銳角三角形和鈍角三角形,根據勾股定理求得BD=16,CD=5,再由圖形求出BC,在銳角三角形中,BC=BD+CD=2,在鈍角三角形中,BC=CD-BD=2.故答案為2或2.考點:勾股定理14、【解析】

設A點的橫坐標為a,把x=a代入得,則點A的坐標為(a,).∵AC⊥y軸,AE⊥x軸,∴C點坐標為(0,),B點的縱坐標為,E點坐標為(a,0),D點的橫坐標為a.∵B點、D點在上,∴當y=時,x=;當x=a,y=.∴B點坐標為(,),D點坐標為(a,).∴AB=a-=,AC=a,AD=-=,AE=.∴AB=AC,AD=AE.又∵∠BAD=∠CAD,∴△BAD∽△CAD.∴.15、x≠-3【解析】求函數自變量的取值范圍,就是求函數解析式有意義的條件,根據分式分母不為0的條件,要使xx+3在實數范圍內有意義,必須16、.【解析】

先求出BE的值,作DM⊥AB,DN⊥BC延長線,先證明△ADM≌△CDN(AAS),得出AM=CN,DM=DN,再根據正方形的性質得BM=BN,設AM=CN=x,BM=AB-AM=12-x=BN=5+x,求出x=,BN=,根據BD為正方形的對角線可得出BD=,BF=BD=,EF==.【詳解】∵∠ABC=∠ADC,∴A,B,C,D四點共圓,∴AC為直徑,∵E為AC的中點,∴E為此圓圓心,∵F為弦BD中點,∴EF⊥BD,連接BE,∴BE=AC===;作DM⊥AB,DN⊥BC延長線,∠BAD=∠BCN,在△ADM和△CDN中,,∴△ADM≌△CDN(AAS),∴AM=CN,DM=DN,∵∠DMB=∠DNC=∠ABC=90°,∴四邊形BNDM為矩形,又∵DM=DN,∴矩形BNDM為正方形,∴BM=BN,設AM=CN=x,BM=AB-AM=12-x=BN=5+x,∴12-x=5+x,x=,BN=,∵BD為正方形BNDM的對角線,∴BD=BN=,BF=BD=,∴EF===.故答案為.【點睛】本題考查了正方形的性質與全等三角形的性質,解題的關鍵是熟練的掌握正方形與全等三角形的性質與應用.三、解答題(共8題,共72分)17、(1)購買一個甲種足球需要50元,購買一個乙種籃球需要1元(2)這所學校最多可購買2個乙種足球【解析】

(1)根據題意可以列出相應的分式方程,從而可以求得購買一個甲種足球、一個乙種足球各需多少元;(2)根據題意可以列出相應的不等式,從而可以求得這所學校最多可購買多少個乙種足球.【詳解】(1)設購買一個甲種足球需要x元,則購買一個乙種籃球需要(x+2)元,根據題意得:,解得:x=50,經檢驗,x=50是原方程的解,且符合題意,∴x+2=1.答:購買一個甲種足球需要50元,購買一個乙種籃球需要1元.(2)設可購買m個乙種足球,則購買(50﹣m)個甲種足球,根據題意得:50×(1+10%)(50﹣m)+1×(1﹣10%)m≤2910,解得:m≤2.答:這所學校最多可購買2個乙種足球.【點睛】本題考查分式方程的應用,一元一次不等式的應用,解答此類問題的關鍵是明確題意,列出相應的分式方程和一元一次不等式,注意分式方程要檢驗,問題(2)要與實際相聯系.18、證明見解析【解析】

根據垂直的定義和直角三角形的全等判定,再利用全等三角形的性質解答即可.【詳解】∵EA⊥AB,EC⊥BC,∴∠EAB=∠ECB=90°,在Rt△EAB與Rt△ECB中,∴Rt△EAB≌Rt△ECB,∴AB=CB,∠ABE=∠CBE,∵BD=BD,在△ABD與△CBD中,∴△ABD≌△CBD,∴AD=CD.【點睛】本題考查了全等三角形的判定及性質,根據垂直的定義和直角三角形的全等判定是解題的關鍵.19、證明見試題解析.【解析】試題分析:首先根據∠ACD=∠BCE得出∠ACB=∠DCE,結合已知條件利用SAS判定△ABC和△DEC全等,從而得出答案.試題解析:∵∠ACD=∠BCE∴∠ACB=∠DCE又∵AC=DCBC=EC∴△ABC≌△DEC∴∠A=∠D考點:三角形全等的證明20、見解析【解析】

根據角平分線的定義可得∠ABF=∠CBF,由已知條件可得∠ABF+∠AFB=∠CBF+∠BED=90°,根據余角的性質可得∠AFB=∠BED,即可求得∠AFE=∠AEF,由等腰三角形的判定即可證得結論.【詳解】∵BF平分∠ABC,∴∠ABF=∠CBF,∵∠BAC=90°,AD⊥BC,∴∠ABF+∠AFB=∠CBF+∠BED=90°,∴∠AFB=∠BED,∵∠AEF=∠BED,∴∠AFE=∠AEF,∴AE=AF.【點睛】本題考查了等腰三角形的判定、直角三角形的性質,根據余角的性質證得∠AFB=∠BED是解題的關鍵.21、(1)證明見解析;(2)△EAD是等腰三角形.證明見解析;(3).【解析】試題分析:(1)連接OG,則由已知易得∠OGE=∠AHK=90°,由OG=OA可得∠AGO=∠OAG,從而可得∠KGE=∠AKH=∠EKG,這樣即可得到KE=GE;(2)設∠FGB=α,由AB是直徑可得∠AGB=90°,從而可得∠KGE=90°-α,結合GE=KE可得∠EKG=90°-α,這樣在△GKE中可得∠E=2α,由∠FGB=∠ACH可得∠ACH=2α,這樣可得∠E=∠ACH,由此即可得到CA∥EF;(3)如下圖2,作NP⊥AC于P,由(2)可知∠ACH=∠E,由此可得sinE=sin∠ACH=,設AH=3a,可得AC=5a,CH=4a,則tan∠CAH=,由(2)中結論易得∠CAK=∠EGK=∠EKG=∠AKC,從而可得CK=AC=5a,由此可得HK=a,tan∠AKH=,AK=a,結合AK=可得a=1,則AC=5;在四邊形BGKH中,由∠BHK=∠BKG=90°,可得∠ABG+∠HKG=180°,結合∠AKH+∠GKG=180°,∠ACG=∠ABG可得∠ACG=∠AKH,在Rt△APN中,由tan∠CAH=,可設PN=12b,AP=9b,由tan∠ACG=tan∠AKH=3可得CP=4b,由此可得AC=AP+CP==5,則可得b=,由此即可在Rt△CPN中由勾股定理解出CN的長.試題解析:(1)如圖1,連接OG.∵EF切⊙O于G,∴OG⊥EF,∴∠AGO+∠AGE=90°,∵CD⊥AB于H,∴∠AHD=90°,∴∠OAG=∠AKH=90°,∵OA=OG,∴∠AGO=∠OAG,∴∠AGE=∠AKH,∵∠EKG=∠AKH,∴∠EKG=∠AGE,∴KE=GE.(2)設∠FGB=α,∵AB是直徑,∴∠AGB=90°,∴∠AGE=∠EKG=90°﹣α,∴∠E=180°﹣∠AGE﹣∠EKG=2α,∵∠FGB=∠ACH,∴∠ACH=2α,∴∠ACH=∠E,∴CA∥FE.(3)作NP⊥AC于P.∵∠ACH=∠E,∴sin∠E=sin∠ACH=,設AH=3a,AC=5a,則CH=,tan∠CAH=,∵CA∥FE,∴∠CAK=∠AGE,∵∠AGE=∠AKH,∴∠CAK=∠AKH,∴AC=CK=5a,HK=CK﹣CH=4a,tan∠AKH==3,AK=,∵AK=,∴,∴a=1.AC=5,∵∠BHD=∠AGB=90°,∴∠BHD+∠AGB=180°,在四邊形BGKH中,∠BHD+∠HKG+∠AGB+∠ABG=360°,∴∠ABG+∠HKG=180°,∵∠AKH+∠HKG=180°,∴∠AKH=∠ABG,∵∠ACN=∠ABG,∴∠AKH=∠ACN,∴tan∠AKH=tan∠ACN=3,∵NP⊥AC于P,∴∠APN=∠CPN=90°,在Rt△APN中,tan∠CAH=,設PN=12b,則AP=9b,在Rt△CPN中,tan∠ACN==3,∴CP=4b,∴AC=AP+CP=13b,∵AC=5,∴13b=5,∴b=,∴CN===.22、(1);(2).【解析】

(1)由5個項目中田賽項目有2個,直接利用概率公式求解即可求得答案;(2)首先根據題意畫出樹狀圖,然后由樹狀圖求得所有

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論