江蘇省揚州市江都區江都實驗中學2023-2024學年中考三模數學試題含解析_第1頁
江蘇省揚州市江都區江都實驗中學2023-2024學年中考三模數學試題含解析_第2頁
江蘇省揚州市江都區江都實驗中學2023-2024學年中考三模數學試題含解析_第3頁
江蘇省揚州市江都區江都實驗中學2023-2024學年中考三模數學試題含解析_第4頁
江蘇省揚州市江都區江都實驗中學2023-2024學年中考三模數學試題含解析_第5頁
已閱讀5頁,還剩18頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

江蘇省揚州市江都區江都實驗中學2023-2024學年中考三模數學試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.四組數中:①1和1;②﹣1和1;③0和0;④﹣和﹣1,互為倒數的是()A.①② B.①③ C.①④ D.①③④2.一個幾何體的三視圖如圖所示,則該幾何體的表面積是()A.24+2π B.16+4π C.16+8π D.16+12π3.如圖,AB是⊙O的直徑,AB=8,弦CD垂直平分OB,E是弧AD上的動點,AF⊥CE于點F,點E在弧AD上從A運動到D的過程中,線段CF掃過的面積為()A.4π+3 B.4π+ C.π+ D.π+34.在平面直角坐標系xOy中,將一塊含有45°角的直角三角板如圖放置,直角頂點C的坐標為(1,0),頂點A的坐標為(0,2),頂點B恰好落在第一象限的雙曲線上,現將直角三角板沿x軸正方向平移,當頂點A恰好落在該雙曲線上時停止運動,則此時點C的對應點C′的坐標為()A.(,0) B.(2,0) C.(,0) D.(3,0)5.關于x的不等式組無解,那么m的取值范圍為()A.m≤-1 B.m<-1 C.-1<m≤0 D.-1≤m<06.九年級學生去距學校10km的博物館參觀,一部分學生騎自行車先走,過了20min后,其余學生乘汽車出發,結果他們同時到達.已知汽車的速度是騎車學生速度的2倍,求騎車學生的速度.設騎車學生的速度為xkm/h,則所列方程正確的是()A. B.C. D.7.一次數學測試后,隨機抽取九年級某班5名學生的成績如下:91,78,1,85,1.關于這組數據說法錯誤的是()A.極差是20 B.中位數是91 C.眾數是1 D.平均數是918.關于的敘述正確的是()A.= B.在數軸上不存在表示的點C.=± D.與最接近的整數是39.如圖,二次函數的圖象開口向下,且經過第三象限的點若點P的橫坐標為,則一次函數的圖象大致是A. B. C. D.10.由6個大小相同的正方體搭成的幾何體如圖所示,比較它的正視圖、左視圖和俯視圖的面積,則()A.三個視圖的面積一樣大 B.主視圖的面積最小C.左視圖的面積最小 D.俯視圖的面積最小11.港珠澳大橋是連接香港、珠海、澳門的超大型跨海通道,全長約55000米,把55000用科學記數法表示為()A.55×103 B.5.5×104 C.5.5×105 D.0.55×10512.據資料顯示,地球的海洋面積約為360000000平方千米,請用科學記數法表示地球海洋面積面積約為多少平方千米()A. B. C. D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.將兩張三角形紙片如圖擺放,量得∠1+∠2+∠3+∠4=220°,則∠5=__.14.如圖,反比例函數y=的圖象上,點A是該圖象第一象限分支上的動點,連結AO并延長交另一支于點B,以AB為斜邊作等腰直角△ABC,頂點C在第四象限,AC與x軸交于點P,連結BP,在點A運動過程中,當BP平分∠ABC時,點A的坐標為_____.15.某自然保護區為估計該地區一種珍稀鳥類的數量,先捕捉了20只,給它們做上標記后放回,過一段時間待它們完全混合于同類后又捕捉了20只,發現其中有4只帶有標記,從而估計該地區此種鳥類的數量大約有______只16.計算:cos245°-tan30°sin60°=______.17.在一次射擊訓練中,某位選手五次射擊的環數分別為5,8,7,6,1.則這位選手五次射擊環數的方差為.18.袋中裝有紅、綠各一個小球,隨機摸出1個小球后放回,再隨機摸出一個,則第一次摸到紅球,第二次摸到綠球的概率是_____.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)先化簡:,再從、2、3中選擇一個合適的數作為a的值代入求值.20.(6分)為了保護視力,學校開展了全校性的視力保健活動,活動前,隨機抽取部分學生,檢查他們的視力,結果如圖所示(數據包括左端點不包括右端點,精確到0.1);活動后,再次檢查這部分學生的視力,結果如表所示分組頻數4.0≤x<4.224.2≤x<4.434.4≤x<4.654.6≤x<4.884.8≤x<5.0175.0≤x<5.25(1)求活動所抽取的學生人數;(2)若視力達到4.8及以上為達標,計算活動前該校學生的視力達標率;(3)請選擇適當的統計量,從兩個不同的角度評價視力保健活動的效果.21.(6分)如圖,AC是⊙O的直徑,BC是⊙O的弦,點P是⊙O外一點,連接PA、PB、AB、OP,已知PB是⊙O的切線.(1)求證:∠PBA=∠C;(2)若OP∥BC,且OP=9,⊙O的半徑為3,求BC的長.22.(8分)為了解某校九年級男生的體能情況,體育老師隨機抽取部分男生進行引體向上測試,并對成績進行了統計,繪制出如下的統計圖①和圖②,請跟進相關信息,解答下列問題:(1)本次抽測的男生人數為,圖①中m的值為;(2)求本次抽測的這組數據的平均數、眾數和中位數;(3)若規定引體向上5次以上(含5次)為體能達標,根據樣本數據,估計該校350名九年級男生中有多少人體能達標.23.(8分)先化簡,再求值:÷(a﹣),其中a=3tan30°+1,b=cos45°.24.(10分)風電已成為我國繼煤電、水電之后的第三大電源,風電機組主要由塔桿和葉片組成(如圖①),圖②是平面圖.光明中學的數學興趣小組針對風電塔桿進行了測量,甲同學站在平地上的A處測得塔桿頂端C的仰角是55°,乙同學站在巖石B處測得葉片的最高位置D的仰角是45°(D,C,H在同一直線上,G,A,H在同一條直線上),他們事先從相關部門了解到葉片的長度為15米(塔桿與葉片連接處的長度忽略不計),巖石高BG為4米,兩處的水平距離AG為23米,BG⊥GH,CH⊥AH,求塔桿CH的高.(參考數據:tan55°≈1.4,tan35°≈0.7,sin55°≈0.8,sin35°≈0.6)25.(10分)問題背景:如圖1,等腰△ABC中,AB=AC,∠BAC=120°,作AD⊥BC于點D,則D為BC的中點,∠BAD=∠BAC=60°,于是==遷移應用:如圖2,△ABC和△ADE都是等腰三角形,∠BAC=∠DAE=120°,D,E,C三點在同一條直線上,連接BD.(1)求證:△ADB≌△AEC;(2)若AD=2,BD=3,請計算線段CD的長;拓展延伸:如圖3,在菱形ABCD中,∠ABC=120°,在∠ABC內作射線BM,作點C關于BM的對稱點E,連接AE并延長交BM于點F,連接CE,CF.(3)證明:△CEF是等邊三角形;(4)若AE=4,CE=1,求BF的長.26.(12分)隨著交通道路的不斷完善,帶動了旅游業的發展,某市旅游景區有A、B、C、D、E等著名景點,該市旅游部門統計繪制出2017年“五?一”長假期間旅游情況統計圖,根據以下信息解答下列問題:(1)2017年“五?一”期間,該市周邊景點共接待游客萬人,扇形統計圖中A景點所對應的圓心角的度數是,并補全條形統計圖.(2)根據近幾年到該市旅游人數增長趨勢,預計2018年“五?一”節將有80萬游客選擇該市旅游,請估計有多少萬人會選擇去E景點旅游?(3)甲、乙兩個旅行團在A、B、D三個景點中,同時選擇去同一景點的概率是多少?請用畫樹狀圖或列表法加以說明,并列舉所用等可能的結果.27.(12分)如圖,一根電線桿PQ直立在山坡上,從地面的點A看,測得桿頂端點P的仰角為45°,向前走6m到達點B,又測得桿頂端點P和桿底端點Q的仰角分別為60°和30°,求電線桿PQ的高度.(結果保留根號).

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、C【解析】

根據倒數的定義,分別進行判斷即可得出答案.【詳解】∵①1和1;1×1=1,故此選項正確;②-1和1;-1×1=-1,故此選項錯誤;③0和0;0×0=0,故此選項錯誤;④?和?1,-×(-1)=1,故此選項正確;∴互為倒數的是:①④,故選C.【點睛】此題主要考查了倒數的概念及性質.倒數的定義:若兩個數的乘積是1,我們就稱這兩個數互為倒數.2、D【解析】

根據三視圖知該幾何體是一個半徑為2、高為4的圓柱體的縱向一半,據此求解可得.【詳解】該幾何體的表面積為2×?π?22+4×4+×2π?2×4=12π+16,故選:D.【點睛】本題主要考查由三視圖判斷幾何體,解題的關鍵是根據三視圖得出幾何體的形狀及圓柱體的有關計算.3、A【解析】

連AC,OC,BC.線段CF掃過的面積=扇形MAH的面積+△MCH的面積,從而證明即可解決問題.【詳解】如下圖,連AC,OC,BC,設CD交AB于H,∵CD垂直平分線段OB,∴CO=CB,∵OC=OB,∴OC=OB=BC,∴,∵AB是直徑,∴,∴,∵,∴點F在以AC為直徑的⊙M上運動,當E從A運動到D時,點F從A運動到H,連接MH,∵MA=MH,∴∴,∵,∴CF掃過的面積為,故選:A.【點睛】本題主要考查了陰影部分面積的求法,熟練掌握扇形的面積公式及三角形的面積求法是解決本題的關鍵.4、C【解析】

過點B作BD⊥x軸于點D,易證△ACO≌△BCD(AAS),從而可求出B的坐標,進而可求出反比例函數的解析式,根據解析式與A的坐標即可得知平移的單位長度,從而求出C的對應點.【詳解】解:過點B作BD⊥x軸于點D,∵∠ACO+∠BCD=90°,∠OAC+∠ACO=90°,∴∠OAC=∠BCD,在△ACO與△BCD中,∴△ACO≌△BCD(AAS)∴OC=BD,OA=CD,∵A(0,2),C(1,0)∴OD=3,BD=1,∴B(3,1),∴設反比例函數的解析式為y=,將B(3,1)代入y=,∴k=3,∴y=,∴把y=2代入y=,∴x=,當頂點A恰好落在該雙曲線上時,此時點A移動了個單位長度,∴C也移動了個單位長度,此時點C的對應點C′的坐標為(,0)故選:C.【點睛】本題考查反比例函數的綜合問題,涉及全等三角形的性質與判定,反比例函數的解析式,平移的性質等知識,綜合程度較高,屬于中等題型.5、A【解析】【分析】先求出每一個不等式的解集,然后再根據不等式組無解得到有關m的不等式,就可以求出m的取值范圍了.【詳解】,解不等式①得:x<m,解不等式②得:x>-1,由于原不等式組無解,所以m≤-1,故選A.【點睛】本題考查了一元一次不等式組無解問題,熟知一元一次不等式組解集的確定方法“大大取大,小小取小,大小小大中間找,大大小小無處找”是解題的關鍵.6、C【解析】試題分析:設騎車學生的速度為xkm/h,則汽車的速度為2xkm/h,由題意得,.故選C.考點:由實際問題抽象出分式方程.7、D【解析】

試題分析:因為極差為:1﹣78=20,所以A選項正確;從小到大排列為:78,85,91,1,1,中位數為91,所以B選項正確;因為1出現了兩次,最多,所以眾數是1,所以C選項正確;因為,所以D選項錯誤.故選D.考點:①眾數②中位數③平均數④極差.8、D【解析】

根據二次根式的加法法則、實數與數軸上的點是一一對應的關系、二次根式的化簡及無理數的估算對各項依次分析,即可解答.【詳解】選項A,+無法計算;選項B,在數軸上存在表示的點;選項C,;選項D,與最接近的整數是=1.故選D.【點睛】本題考查了二次根式的加法法則、實數與數軸上的點是一一對應的關系、二次根式的化簡及無理數的估算等知識點,熟記這些知識點是解題的關鍵.9、D【解析】【分析】根據二次函數的圖象可以判斷a、b、的正負情況,從而可以得到一次函數經過哪幾個象限,觀察各選項即可得答案.【詳解】由二次函數的圖象可知,,,當時,,的圖象經過二、三、四象限,觀察可得D選項的圖象符合,故選D.【點睛】本題考查二次函數的圖象與性質、一次函數的圖象與性質,認真識圖,會用函數的思想、數形結合思想解答問題是關鍵.10、C【解析】試題分析:根據三視圖的意義,可知正視圖由5個面,左視圖有3個面,俯視圖有4個面,故可知主視圖的面積最大.故選C考點:三視圖11、B【解析】

科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數.確定n的值時,要看把原數變成a時,小數點移動了多少位,n的絕對值與小數點移動的位數相同.當原數絕對值>1時,n是正數;當原數的絕對值<1時,n是負數.【詳解】55000是5位整數,小數點向左移動4位后所得的數即可滿足科學記數法的要求,由此可知10的指數為4,所以,55000用科學記數法表示為5.5×104,故選B.【點睛】本題考查科學記數法的表示方法.科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數,表示時關鍵要正確確定a的值以及n的值.12、B【解析】分析:科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數.確定n的值時,要看把原數變成a時,小數點移動了多少位,n的絕對值與小數點移動的位數相同.當原數絕對值>1時,n是正數;當原數的絕對值<1時,n是負數.詳解:將360000000用科學記數法表示為:3.6×1.故選:B.點睛:此題考查科學記數法的表示方法.科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數,表示時關鍵要正確確定a的值以及n的值.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、40°【解析】

直接利用三角形內角和定理得出∠6+∠7的度數,進而得出答案.【詳解】如圖所示:∠1+∠2+∠6=180°,∠3+∠4+∠7=180°,

∵∠1+∠2+∠3+∠4=220°,

∴∠1+∠2+∠6+∠3+∠4+∠7=360°,

∴∠6+∠7=140°,

∴∠5=180°-(∠6+∠7)=40°.

故答案為40°.【點睛】主要考查了三角形內角和定理,正確應用三角形內角和定理是解題關鍵.14、(,)【解析】分析:連接OC,過點A作AE⊥x軸于E,過點C作CF⊥x軸于F,則有△AOE≌△OCF,進而可得出AE=OF、OE=CF,根據角平分線的性質可得出,設點A的坐標為(a,)(a>0),由可求出a值,進而得到點A的坐標.詳解:連接OC,過點A作AE⊥x軸于E,過點C作CF⊥x軸于F,如圖所示.∵△ABC為等腰直角三角形,∴OA=OC,OC⊥AB,∴∠AOE+∠COF=90°.∵∠COF+∠OCF=90°,∴∠AOE=∠OCF.在△AOE和△OCF中,,∴△AOE≌△OCF(AAS),∴AE=OF,OE=CF.∵BP平分∠ABC,∴,∴.設點A的坐標為(a,),∴,解得:a=或a=-(舍去),∴=,∴點A的坐標為(,),故答案為:((,)).點睛:本題考查了反比例函數圖象上點的坐標特征、全等三角形的判定與性質、角平分線的性質以及等腰直角三角形性質的綜合運用,構造全等三角形,利用全等三角形的對應邊相等是解題的關鍵.15、1【解析】

求出樣本中有標記的所占的百分比,再用樣本容量除以百分比即可解答.【詳解】解:

只.

故答案為:1.【點睛】本題考查的是通過樣本去估計總體,總體百分比約等于樣本百分比.16、0【解析】

直接利用特殊角的三角函數值代入進而得出答案.【詳解】=.故答案為0.【點睛】此題主要考查了特殊角的三角函數值,正確記憶相關數據是解題關鍵.17、2.【解析】試題分析:五次射擊的平均成績為=(5+7+8+6+1)=7,方差S2=[(5﹣7)2+(8﹣7)2+(7﹣7)2+(6﹣7)2+(1﹣7)2]=2.考點:方差.18、【解析】解:列表如下:所有等可能的情況有4種,所以第一次摸到紅球,第二次摸到綠球的概率=.故答案為.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、-1.【解析】

根據分式的加法和除法可以化簡題目中的式子,然后在、2、3中選擇一個使得原分式有意義的值代入化簡后的式子即可解答本題.【詳解】,當時,原式.故答案為:-1.【點睛】本題考查分式的化簡求值,解答本題的關鍵是明確分式化簡求值的方法.20、(1)所抽取的學生人數為40人(2)37.5%(3)①視力x<4.4之間活動前有9人,活動后只有5人,人數明顯減少.②活動前合格率37.5%,活動后合格率55%,說明視力保健活動的效果比較好【解析】【分析】(1)求出頻數之和即可;(2)根據合格率=合格人數÷總人數×100%即可得解;(3)從兩個不同的角度分析即可,答案不唯一.【詳解】(1)∵頻數之和=3+6+7+9+10+5=40,∴所抽取的學生人數為40人;(2)活動前該校學生的視力達標率=×100%=37.5%;(3)①視力x<4.4之間活動前有9人,活動后只有5人,人數明顯減少;②活動前合格率37.5%,活動后合格率55%,說明視力保健活動的效果比較好.【點睛】本題考查了頻數分布直方圖、用樣本估計總體等知識,熟知頻數、合格率等相關概念是解題的關鍵.21、(1)證明見解析;(2)BC=1.【解析】

(1)連接OB,根據切線的性質和圓周角定理求出∠PBO=∠ABC=90°,即可求出答案;

(2)求出△ABC∽△PBO,得出比例式,代入求出即可.【詳解】(1)連接OB,∵PB是⊙O的切線,∴PB⊥OB,∴∠PBA+∠OBA=90°,∵AC是⊙O的直徑,∴∠ABC=90°,∠C+∠BAC=90°,∵OA=OB,∴∠OBA=∠BAO,∴∠PBA=∠C;(2)∵⊙O的半徑是3,∴OB=3,AC=6,∵OP∥BC,∴∠BOP=∠OBC,∵OB=OC,∴∠OBC=∠C,∴∠BOP=∠C,∵∠ABC=∠PBO=90°,∴△ABC∽△PBO,∴=,∴=,∴BC=1.【點睛】本題考查平行線的性質,切線的性質,相似三角形的性質和判定,圓周角定理等知識點,能綜合運用知識點進行推理是解題關鍵.22、(1)50、1;(2)平均數為5.16次,眾數為5次,中位數為5次;(3)估計該校350名九年級男生中有2人體能達標.【解析】分析:(Ⅰ)根據4次的人數及其百分比可得總人數,用6次的人數除以總人數求得m即可;(Ⅱ)根據平均數、眾數、中位數的定義求解可得;(Ⅲ)總人數乘以樣本中5、6、7次人數之和占被調查人數的比例可得.詳解:(Ⅰ)本次抽測的男生人數為10÷20%=50,m%=×100%=1%,所以m=1.故答案為50、1;(Ⅱ)平均數為=5.16次,眾數為5次,中位數為=5次;(Ⅲ)×350=2.答:估計該校350名九年級男生中有2人體能達標.點睛:本題考查了條形統計圖,讀懂統計圖,從統計圖中得到必要的信息是解決問題的關鍵.條形統計圖能清楚地表示出每個項目的數據.23、,【解析】原式括號中兩項通分并利用同分母分式的加法法則計算,同時利用除以一個數等于乘以這個數的倒數將除法運算化為乘法運算,約分得到最簡結果,利用-1的偶次冪為1及特殊角的三角函數值求出a的值,代入計算即可求出值.解:原式=,當,原式=.“點睛”此題考查了分式的化簡求值,分式的加減運算關鍵是通分,通分的關鍵是找最簡公分母;分式的乘除運算關鍵是約分,約分的關鍵是找公因式.24、塔桿CH的高為42米【解析】

作BE⊥DH,知GH=BE、BG=EH=4,設AH=x,則BE=GH=23+x,由CH=AHtan∠CAH=tan55°?x知CE=CH-EH=tan55°?x-4,根據BE=DE可得關于x的方程,解之可得.【詳解】解:如圖,作BE⊥DH于點E,則GH=BE、BG=EH=4,設AH=x,則BE=GH=GA+AH=23+x,在Rt△ACH中,CH=AHtan∠CAH=tan55°?x,∴CE=CH﹣EH=tan55°?x﹣4,∵∠DBE=45°,∴BE=DE=CE+DC,即23+x=tan55°?x﹣4+15,解得:x≈30,∴CH=tan55°?x=1.4×30=42,答:塔桿CH的高為42米.【點睛】本題考查了解直角三角形的應用,解答本題要求學生能借助仰角構造直角三角形并解直角三角形.25、(1)見解析;(2)CD=;(3)見解析;(4)【解析】試題分析:遷移應用:(1)如圖2中,只要證明∠DAB=∠CAE,即可根據SAS解決問題;

(2)結論:CD=AD+BD.由△DAB≌△EAC,可知BD=CE,在Rt△ADH中,DH=AD?cos30°=AD,由AD=AE,AH⊥DE,推出DH=HE,由CD=DE+EC=2DH+BD=AD+BD,即可解決問題;

拓展延伸:(3)如圖3中,作BH⊥AE于H,連接BE.由BC=BE=BD=BA,FE=FC,推出A、D、E、C四點共圓,推出∠ADC=∠AEC=120°,推出∠FEC=60°,推出△EFC是等邊三角形;

(4)由AE=4,EC=EF=1,推出AH=HE=2,FH=3,在Rt△BHF中,由∠BFH=30°,可得=cos30°,由此即可解決問題.試題解析:遷移應用:(1)證明:如圖2,

∵∠BAC=∠DAE=120°,

∴∠DAB=∠CAE,

在△DAE和△EAC中,

DA=EA,∠DAB=∠EAC,AB=AC,

∴△DAB≌△EAC,

(2)結論:CD=AD+BD.

理由:如圖2-1中,作AH⊥CD于H.

∵△DAB≌△EAC,

∴BD=CE,

在Rt△ADH中,DH=AD?cos30°=AD,

∵AD=AE,AH⊥DE,

∴DH=HE,

∵CD=DE+EC=2DH+BD=AD+BD=.

拓展延伸:(3)如圖3中,作BH⊥AE于H,連接BE.

∵四邊形ABCD是

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論