江蘇省興化市安豐中學2023-2024學年中考數學押題試卷含解析_第1頁
江蘇省興化市安豐中學2023-2024學年中考數學押題試卷含解析_第2頁
江蘇省興化市安豐中學2023-2024學年中考數學押題試卷含解析_第3頁
江蘇省興化市安豐中學2023-2024學年中考數學押題試卷含解析_第4頁
江蘇省興化市安豐中學2023-2024學年中考數學押題試卷含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

江蘇省興化市安豐中學2023-2024學年中考數學押題試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.二次函數的圖像如圖所示,下列結論正確是()A. B. C. D.有兩個不相等的實數根2.的相反數是()A. B.- C. D.3.如圖是由5個大小相同的正方體組成的幾何體,則該幾何體的左視圖是()A. B.C. D.4.如圖,在△ABC中,cosB=,sinC=,AC=5,則△ABC的面積是()A. B.12 C.14 D.215.若關于x的一元一次不等式組無解,則a的取值范圍是()A.a≥3 B.a>3 C.a≤3 D.a<36.如圖,在半徑為5的⊙O中,弦AB=6,點C是優弧上一點(不與A,B重合),則cosC的值為()A. B. C. D.7.如圖,⊙O的半徑OD⊥弦AB于點C,連結AO并延長交⊙O于點E,連結EC.若AB=8,CD=2,則EC的長為()A. B.8 C. D.8.在Rt△ABC中,∠C=90°,那么sin∠B等于()A. B. C. D.9.如圖,用一個半徑為6cm的定滑輪帶動重物上升,假設繩索(粗細不計)與滑輪之間沒有滑動,繩索端點G向下移動了3πcm,則滑輪上的點F旋轉了()A.60° B.90° C.120° D.45°10.下表是某校合唱團成員的年齡分布.年齡/歲13141516頻數515x對于不同的x,下列關于年齡的統計量不會發生改變的是()A.眾數、中位數 B.平均數、中位數 C.平均數、方差 D.中位數、方差11.如果實數a=,且a在數軸上對應點的位置如圖所示,其中正確的是()A.B.C.D.12.如圖,在等腰直角三角形ABC中,∠C=90°,D為BC的中點,將△ABC折疊,使點A與點D重合,EF為折痕,則sin∠BED的值是()A. B. C. D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,ABCDE是正五邊形,已知AG=1,則FG+JH+CD=_____.14.若﹣4xay+x2yb=﹣3x2y,則a+b=_____.15.計算a3÷a2?a的結果等于_____.16.2018年貴州省公務員、人民警察、基層培養項目和選調生報名人數約40.2萬人,40.2萬人用科學記數法表示為_____人.17.若正多邊形的一個內角等于140°,則這個正多邊形的邊數是_______.18.《九章算術》是中國傳統數學最重要的著作,奠定了中國傳統數學的基本框架.它的代數成就主要包括開方術、正負術和方程術.其中,方程術是《九章算術》最高的數學成就.《九章算術》中記載:“今有牛五、羊二,直金十兩;牛二、羊五,直金八兩.問:牛、羊各直金幾何?”譯文:“假設有5頭牛、2只羊,值金10兩;2頭牛、5只羊,值金8兩.問:每頭牛、每只羊各值金多少兩?”設每頭牛值金x兩,每只羊值金y兩,可列方程組為_____.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)北京時間2019年3月10日0時28分,我國在西昌衛星發射中心用長征三號乙運載火箭,成功將中星衛星發射升空,衛星進入預定軌道.如圖,火星從地面處發射,當火箭達到點時,從位于地面雷達站處測得的距離是,仰角為;1秒后火箭到達點,測得的仰角為.(參考數據:sin42.4°≈0.67,cos42.4°≈0.74,tan42.4°≈0.905,sin45.5°≈0.71,cos45.5°≈0.70,tan45.5°≈1.02)求發射臺與雷達站之間的距離;求這枚火箭從到的平均速度是多少(結果精確到0.01)?20.(6分)重百江津商場銷售AB兩種商品,售出1件A種商品和4件B種商品所得利潤為600元,售出3件A商品和5件B種商品所得利潤為1100元.求每件A種商品和每件B種商品售出后所得利潤分別為多少元?由于需求量大A、B兩種商品很快售完,重百商場決定再次購進A、B兩種商品共34件,如果將這34件商品全部售完后所得利潤不低于4000元,那么重百商場至少購進多少件A種商品?21.(6分)計算:(π﹣3.14)0+|﹣1|﹣2sin45°+(﹣1)1.22.(8分)某校為了解學生體質情況,從各年級隨機抽取部分學生進行體能測試,每個學生的測試成績按標準對應為優秀、良好、及格、不及格四個等級,統計員在將測試數據繪制成圖表時發現,優秀漏統計4人,良好漏統計6人,于是及時更正,從而形成如圖圖表,請按正確數據解答下列各題:學生體能測試成績各等次人數統計表體能等級調整前人數調整后人數優秀8良好16及格12不及格4合計40(1)填寫統計表;(2)根據調整后數據,補全條形統計圖;(3)若該校共有學生1500人,請你估算出該校體能測試等級為“優秀”的人數.23.(8分)科技改變世界.2017年底,快遞分揀機器人從微博火到了朋友圈,據介紹,這些機器人不僅可以自動規劃最優路線,將包裹準確地放入相應的格口,還會感應避讓障礙物,自動歸隊取包裹.沒電的時候還會自己找充電樁充電.某快遞公司啟用80臺A種機器人、300臺B種機器人分揀快遞包裹.A,B兩種機器人全部投入工作,1小時共可以分揀1.44萬件包裹,若全部A種機器人工作3小時,全部B種機器人工作2小時,一共可以分揀3.12萬件包裹.(1)求兩種機器人每臺每小時各分揀多少件包裹;(2)為了進一步提高效率,快遞公司計劃再購進A,B兩種機器人共200臺,若要保證新購進的這批機器人每小時的總分揀量不少于7000件,求最多應購進A種機器人多少臺?24.(10分)某景區在同一線路上順次有三個景點A,B,C,甲、乙兩名游客從景點A出發,甲步行到景點C;乙花20分鐘時間排隊后乘觀光車先到景點B,在B處停留一段時間后,再步行到景點C.甲、乙兩人離景點A的路程s(米)關于時間t(分鐘)的函數圖象如圖所示.甲的速度是______米/分鐘;當20≤t≤30時,求乙離景點A的路程s與t的函數表達式;乙出發后多長時間與甲在途中相遇?若當甲到達景點C時,乙與景點C的路程為360米,則乙從景點B步行到景點C的速度是多少?25.(10分)矩形ABCD中,DE平分∠ADC交BC邊于點E,P為DE上的一點(PE<PD),PM⊥PD,PM交AD邊于點M.(1)若點F是邊CD上一點,滿足PF⊥PN,且點N位于AD邊上,如圖1所示.求證:①PN=PF;②DF+DN=DP;(2)如圖2所示,當點F在CD邊的延長線上時,仍然滿足PF⊥PN,此時點N位于DA邊的延長線上,如圖2所示;試問DF,DN,DP有怎樣的數量關系,并加以證明.26.(12分)每到春夏交替時節,雌性楊樹會以滿天飛絮的方式來傳播下一代,漫天飛舞的楊絮易引發皮膚病、呼吸道疾病等,給人們造成困擾,為了解市民對治理楊絮方法的贊同情況,某課題小組隨機調查了部分市民(問卷調查表如表所示),并根據調查結果繪制了如下尚不完整的統計圖.治理楊絮一一您選哪一項?(單選)A.減少楊樹新增面積,控制楊樹每年的栽種量B.調整樹種結構,逐漸更換現有楊樹C.選育無絮楊品種,并推廣種植D.對雌性楊樹注射生物干擾素,避免產生飛絮E.其他根據以上統計圖,解答下列問題:(1)本次接受調查的市民共有人;(2)扇形統計圖中,扇形E的圓心角度數是;(3)請補全條形統計圖;(4)若該市約有90萬人,請估計贊同“選育無絮楊品種,并推廣種植”的人數.27.(12分)如圖,在△ABC中,∠ABC=90°,BD為AC邊上的中線.(1)按如下要求尺規作圖,保留作圖痕跡,標注相應的字母:過點C作直線CE,使CE⊥BC于點C,交BD的延長線于點E,連接AE;(2)求證:四邊形ABCE是矩形.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、C【解析】【分析】觀察圖象:開口向下得到a<0;對稱軸在y軸的右側得到a、b異號,則b>0;拋物線與y軸的交點在x軸的上方得到c>0,所以abc<0;由對稱軸為x==1,可得2a+b=0;當x=-1時圖象在x軸下方得到y=a-b+c<0,結合b=-2a可得3a+c<0;觀察圖象可知拋物線的頂點為(1,3),可得方程有兩個相等的實數根,據此對各選項進行判斷即可.【詳解】觀察圖象:開口向下得到a<0;對稱軸在y軸的右側得到a、b異號,則b>0;拋物線與y軸的交點在x軸的上方得到c>0,所以abc<0,故A選項錯誤;∵對稱軸x==1,∴b=-2a,即2a+b=0,故B選項錯誤;當x=-1時,y=a-b+c<0,又∵b=-2a,∴3a+c<0,故C選項正確;∵拋物線的頂點為(1,3),∴的解為x1=x2=1,即方程有兩個相等的實數根,故D選項錯誤,故選C.【點睛】本題考查了二次函數圖象與系數的關系:對于二次函數y=ax2+bx+c(a≠0)的圖象,當a>0,開口向上,函數有最小值,a<0,開口向下,函數有最大值;對稱軸為直線x=,a與b同號,對稱軸在y軸的左側,a與b異號,對稱軸在y軸的右側;當c>0,拋物線與y軸的交點在x軸的上方;當△=b2-4ac>0,拋物線與x軸有兩個交點.2、C【解析】

根據只有符號不同的兩個數互為相反數進行解答即可.【詳解】與只有符號不同,所以的相反數是,故選C.【點睛】本題考查了相反數的定義,熟練掌握相反數的定義是解題的關鍵.3、B【解析】

找到從左面看所得到的圖形即可,注意所有的看到的棱都應表現在主視圖中.【詳解】解:從左面看易得下面一層有2個正方形,上面一層左邊有1個正方形.故選:B.【點睛】本題考查了三視圖的知識,左視圖是從物體的左面看得到的視圖.4、A【解析】

根據已知作出三角形的高線AD,進而得出AD,BD,CD,的長,即可得出三角形的面積.【詳解】解:過點A作AD⊥BC,∵△ABC中,cosB=,sinC=,AC=5,

∴cosB==,

∴∠B=45°,

∵sinC===,

∴AD=3,

∴CD==4,

∴BD=3,

則△ABC的面積是:×AD×BC=×3×(3+4)=.

故選:A.【點睛】此題主要考查了解直角三角形的知識,作出AD⊥BC,進而得出相關線段的長度是解決問題的關鍵.5、A【解析】

先求出各不等式的解集,再與已知解集相比較求出a的取值范圍.【詳解】由x﹣a>0得,x>a;由1x﹣1<2(x+1)得,x<1,∵此不等式組的解集是空集,∴a≥1.故選:A.【點睛】考查的是解一元一次不等式組,熟知“同大取大;同小取??;大小小大中間找;大大小小找不到”的原則是解答此題的關鍵.6、D【解析】解:作直徑AD,連結BD,如圖.∵AD為直徑,∴∠ABD=90°.在Rt△ABD中,∵AD=10,AB=6,∴BD==8,∴cosD===.∵∠C=∠D,∴cosC=.故選D.點睛:本題考查了圓周角定理:在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半.推論:半圓(或直徑)所對的圓周角是直角,90°的圓周角所對的弦是直徑.也考查了解直角三角形.7、D【解析】∵⊙O的半徑OD⊥弦AB于點C,AB=8,∴AC=AB=1.設⊙O的半徑為r,則OC=r-2,在Rt△AOC中,∵AC=1,OC=r-2,∴OA2=AC2+OC2,即r2=12+(r﹣2)2,解得r=2.∴AE=2r=3.連接BE,∵AE是⊙O的直徑,∴∠ABE=90°.在Rt△ABE中,∵AE=3,AB=8,∴.在Rt△BCE中,∵BE=6,BC=1,∴.故選D.8、A【解析】

根據銳角三角函數的定義得出sinB等于∠B的對邊除以斜邊,即可得出答案.【詳解】根據在△ABC中,∠C=90°,那么sinB==,故答案選A.【點睛】本題考查的知識點是銳角三角函數的定義,解題的關鍵是熟練的掌握銳角三角函數的定義.9、B【解析】

由弧長的計算公式可得答案.【詳解】解:由圓弧長計算公式,將l=3π代入,可得n=90,故選B.【點睛】本題主要考查圓弧長計算公式,牢記并運用公式是解題的關鍵.10、A【解析】

由頻數分布表可知后兩組的頻數和為10,即可得知總人數,結合前兩組的頻數知出現次數最多的數據及第15、16個數據的平均數,可得答案.【詳解】由題中表格可知,年齡為15歲與年齡為16歲的頻數和為,則總人數為,故該組數據的眾數為14歲,中位數為(歲),所以對于不同的x,關于年齡的統計量不會發生改變的是眾數和中位數,故選A.【點睛】本題主要考查頻數分布表及統計量的選擇,由表中數據得出數據的總數是根本,熟練掌握平均數、中位數、眾數及方差的定義和計算方法是解題的關鍵.11、C【解析】分析:估計的大小,進而在數軸上找到相應的位置,即可得到答案.詳解:由被開方數越大算術平方根越大,即故選C.點睛:考查了實數與數軸的的對應關系,以及估算無理數的大小,解決本題的關鍵是估計的大小.12、A【解析】∵△DEF是△AEF翻折而成,

∴△DEF≌△AEF,∠A=∠EDF,

∵△ABC是等腰直角三角形,

∴∠EDF=45°,由三角形外角性質得∠CDF+45°=∠BED+45°,

∴∠BED=∠CDF,

設CD=1,CF=x,則CA=CB=2,

∴DF=FA=2-x,

∴在Rt△CDF中,由勾股定理得,CF2+CD2=DF2,即x2+1=(2-x)2,

解得x=,

∴sin∠BED=sin∠CDF=.

故選:A.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、+1【解析】

根據對稱性可知:GJ∥BH,GB∥JH,∴四邊形JHBG是平行四邊形,∴JH=BG,同理可證:四邊形CDFB是平行四邊形,∴CD=FB,∴FG+JH+CD=FG+BG+FB=2BF,設FG=x,∵∠AFG=∠AFB,∠FAG=∠ABF=36°,∴△AFG∽△BFA,∴AF2=FG?BF,∵AF=AG=BG=1,∴x(x+1)=1,∴x=(負根已經舍棄),∴BF=+1=,∴FG+JH+CD=+1.故答案為+1.14、1【解析】

兩個單項式合并成一個單項式,說明這兩個單項式為同類項.【詳解】解:由同類項的定義可知,a=2,b=1,∴a+b=1.故答案為:1.【點睛】本題考查的知識點為:同類項中相同字母的指數是相同的.15、a1【解析】

根據同底數冪的除法法則和同底數冪乘法法則進行計算即可.【詳解】解:原式=a3﹣1+1=a1.故答案為a1.【點睛】本題考查了同底數冪的乘除法,關鍵是掌握計算法則.16、4.02×1.【解析】

科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數.確定n的值時,要看把原數變成a時,小數點移動了多少位,n的絕對值與小數點移動的位數相同.當原數絕對值>1時,n是正數;當原數的絕對值<1時,n是負數.【詳解】解:40.2萬=4.02×1,故答案為:4.02×1.【點睛】此題考查科學記數法的表示方法.科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數,表示時關鍵要正確確定a的值以及n的值.17、1【解析】試題分析:此題主要考查了多邊形的外角與內角,做此類題目,首先求出正多邊形的外角度數,再利用外角和定理求出求邊數.首先根據求出外角度數,再利用外角和定理求出邊數.∵正多邊形的一個內角是140°,∴它的外角是:180°-140°=40°,360°÷40°=1.故答案為1.考點:多邊形內角與外角.18、【解析】試題分析:根據“5頭牛,2只羊,值金10兩;2頭牛、5只羊,值金8兩.”列方程組即可.考點:二元一次方程組的應用三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(Ⅰ)發射臺與雷達站之間的距離約為;(Ⅱ)這枚火箭從到的平均速度大約是.【解析】

(Ⅰ)在Rt△ACD中,根據銳角三角函數的定義,利用∠ADC的余弦值解直角三角形即可;(Ⅱ)在Rt△BCD和Rt△ACD中,利用∠BDC的正切值求出BC的長,利用∠ADC的正弦值求出AC的長,進而可得AB的長,即可得答案.【詳解】(Ⅰ)在中,,≈0.74,∴.答:發射臺與雷達站之間的距離約為.(Ⅱ)在中,,∴.∵在中,,∴.∴.答:這枚火箭從到的平均速度大約是.【點睛】本題考查解直角三角形的應用,熟練掌握銳角三角函數的定義是解題關鍵.20、(1)200元和100元(2)至少6件【解析】

(1)設A種商品售出后所得利潤為x元,B種商品售出后所得利潤為y元.由售出1件A種商品和4件B種商品所得利潤為600元,售出3件A種商品和5件B種商品所得利潤為1100元建立兩個方程,構成方程組求出其解就可以;(2)設購進A種商品a件,則購進B種商品(34﹣a)件.根據獲得的利潤不低于4000元,建立不等式求出其解即可.【詳解】解:(1)設A種商品售出后所得利潤為x元,B種商品售出后所得利潤為y元.由題意,得,解得:,答:A種商品售出后所得利潤為200元,B種商品售出后所得利潤為100元.(2)設購進A種商品a件,則購進B種商品(34﹣a)件.由題意,得200a+100(34﹣a)≥4000,解得:a≥6答:威麗商場至少需購進6件A種商品.21、【解析】

直接利用絕對值的性質以及特殊角的三角函數值、負整數指數冪的性質化簡,進而求出答案.【詳解】原式.【點睛】考核知識點:三角函數混合運算.正確計算是關鍵.22、(1)12;22;12;4;50;(2)詳見解析;(3)1.【解析】

(1)求出各自的人數,補全表格即可;

(2)根據調整后的數據,補全條形統計圖即可;

(3)根據“游戲”人數占的百分比,乘以1500即可得到結果.【詳解】解:(1)填表如下:體能等級調整前人數調整后人數優秀812良好1622及格1212不及格44合計4050故答案為12;22;12;4;50;(2)補全條形統計圖,如圖所示:(3)抽取的學生中體能測試的優秀率為24%,則該校體能測試為“優秀”的人數為1500×24%=1(人).【點睛】本題考查了統計表與條形統計圖的知識點,解題的關鍵是熟練的掌握統計表與條形統計圖的相關知識點.23、(1)A種機器人每臺每小時各分揀30件包裹,B種機器人每臺每小時各分揀40件包裹(2)最多應購進A種機器人100臺【解析】

(1)A種機器人每臺每小時各分揀x件包裹,B種機器人每臺每小時各分揀y件包裹,根據題意列方程組即可得到結論;(2)設最多應購進A種機器人a臺,購進B種機器人(200?a)臺,由題意得,根據題意兩不等式即可得到結論.【詳解】(1)A種機器人每臺每小時各分揀x件包裹,B種機器人每臺每小時各分揀y件包裹,由題意得,,解得,,答:A種機器人每臺每小時各分揀30件包裹,B種機器人每臺每小時各分揀40件包裹;(2)設最多應購進A種機器人a臺,購進B種機器人(200﹣a)臺,由題意得,30a+40(200﹣a)≥7000,解得:a≤100,則最多應購進A種機器人100臺.【點睛】本題考查了二元一次方程組,一元一次不等式的應用,正確的理解題意是解題的關鍵.24、(1)60;(2)s=10t-6000;(3)乙出發5分鐘和1分鐘時與甲在途中相遇;(4)乙從景點B步行到景點C的速度是2米/分鐘.【解析】

(1)觀察圖像得出路程和時間,即可解決問題.(2)利用待定系數法求一次函數解析式即可;(3)分兩種情況討論即可;(4)設乙從B步行到C的速度是x米/分鐘,根據當甲到達景點C時,乙與景點C的路程為360米,所用的時間為(90-60)分鐘,列方程求解即可.【詳解】(1)甲的速度為60米/分鐘.(2)當20≤t≤1時,設s=mt+n,由題意得:,解得:,所以s=10t-6000;(3)①當20≤t≤1時,60t=10t-6000,解得:t=25,25-20=5;②當1≤t≤60時,60t=100,解得:t=50,50-20=1.綜上所述:乙出發5分鐘和1分鐘時與甲在途中相遇.(4)設乙從B步行到C的速度是x米/分鐘,由題意得:5400-100-(90-60)x=360解得:x=2.答:乙從景點B步行到景點C的速度是2米/分鐘.【點睛】本題考查了待定系數法求一次函數解析式、行程問題等知識,解題的關鍵是理解題意,讀懂圖像信息,學會構建一次函數解決實際問題,屬于中考??碱}型.25、(1)①證明見解析;②證明見解析;(2),證明見解析.【解析】

(1)①利用矩形的性質,結合已知條件可證△PMN≌△PDF,則可證得結論;②由勾股定理可求得DM=DP,利用①可求得MN=DF,則可證得結論;(2)過點P作PM1⊥PD,PM1交AD邊于點M1,則可證得△PM1N≌△PDF,則可證得M1N=DF,同(1)②的方法可證得結論.【詳解】解:(1)①∵四邊形ABCD是矩形,∴∠ADC=90°.又∵DE平分∠ADC,∴∠ADE=∠EDC=45°;∵PM⊥PD,∠DMP=45°,∴DP=MP.∵PM⊥PD,PF⊥PN,∴∠MPN+∠NPD=∠NPD+∠DPF=90°,∴∠MPN=∠DPF.在△PMN和△PDF中,,∴△PMN≌△PDF(ASA),∴PN=PF,MN=DF;②∵PM⊥PD,DP=MP,∴DM2=DP2+MP2=2DP2,∴DM=DP.∵又∵DM=DN+MN,且由①可得MN=DF,∴DM=DN+DF,∴DF+DN=DP;(2).理由如下:過點P作PM1⊥PD,PM1交AD邊于點M1,如圖,∵四邊形ABCD是矩形,∴∠ADC=90°.又∵DE平分∠ADC,∴∠ADE=∠EDC=

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論