




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
江西省新余市分宜中學2023-2024學年高考全國統考預測密卷數學試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知集合A={y|y=|x|﹣1,x∈R},B={x|x≥2},則下列結論正確的是()A.﹣3∈AB.3BC.A∩B=BD.A∪B=B2.若某幾何體的三視圖(單位:cm)如圖所示,則此幾何體的體積是()A.36cm3 B.48cm3 C.60cm3 D.72cm33.已知非零向量,滿足,,則與的夾角為()A. B. C. D.4.寧波古圣王陽明的《傳習錄》專門講過易經八卦圖,下圖是易經八卦圖(含乾、坤、巽、震、坎、離、艮、兌八卦),每一卦由三根線組成(“—”表示一根陽線,“——”表示一根陰線).從八卦中任取兩卦,這兩卦的六根線中恰有四根陰線的概率為()A. B. C. D.5.若直線經過拋物線的焦點,則()A. B. C.2 D.6.已知函數的圖像向右平移個單位長度后,得到的圖像關于軸對稱,,當取得最小值時,函數的解析式為()A. B.C. D.7.以下三個命題:①在勻速傳遞的產品生產流水線上,質檢員每10分鐘從中抽取一件產品進行某項指標檢測,這樣的抽樣是分層抽樣;②若兩個變量的線性相關性越強,則相關系數的絕對值越接近于1;③對分類變量與的隨機變量的觀測值來說,越小,判斷“與有關系”的把握越大;其中真命題的個數為()A.3 B.2 C.1 D.08.設x、y、z是空間中不同的直線或平面,對下列四種情形:①x、y、z均為直線;②x、y是直線,z是平面;③z是直線,x、y是平面;④x、y、z均為平面.其中使“且”為真命題的是()A.③④ B.①③ C.②③ D.①②9.如圖網格紙上小正方形的邊長為,粗線畫出的是某幾何體的三視圖,則該幾何體的所有棱中最長棱的長度為()A. B. C. D.10.若實數x,y滿足條件,目標函數,則z的最大值為()A. B.1 C.2 D.011.過拋物線C:y2=4x的焦點F,且斜率為的直線交C于點M(M在x軸的上方),l為C的準線,點N在l上且MN⊥l,則M到直線NF的距離為()A. B. C. D.12.函數的圖像大致為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.的展開式中的系數為__________.14.如圖所示梯子結構的點數依次構成數列,則________.15.若,則__________.16.三對父子去參加親子活動,坐在如圖所示的6個位置上,有且僅有一對父子是相鄰而坐的坐法有________種(比如:B與D、B與C是相鄰的,A與D、C與D是不相鄰的).三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數,曲線在點處的切線方程為.(Ⅰ)求,的值;(Ⅱ)若,求證:對于任意,.18.(12分)在平面直角坐標系中,直線的參數方程為(為參數),以坐標原點為極點,軸正半軸為極軸建立極坐標系,曲線的極坐標方程為.(1)若,求曲線與的交點坐標;(2)過曲線上任意一點作與夾角為45°的直線,交于點,且的最大值為,求的值.19.(12分)如圖為某大江的一段支流,岸線與近似滿足∥,寬度為.圓為江中的一個半徑為的小島,小鎮位于岸線上,且滿足岸線,.現計劃建造一條自小鎮經小島至對岸的水上通道(圖中粗線部分折線段,在右側),為保護小島,段設計成與圓相切.設.(1)試將通道的長表示成的函數,并指出定義域;(2)若建造通道的費用是每公里100萬元,則建造此通道最少需要多少萬元?20.(12分)已知函數.(1)若,,求函數的單調區間;(2)時,若對一切恒成立,求a的取值范圍.21.(12分)已知函數.(1)求不等式的解集;(2)若存在實數,使得不等式成立,求實數的取值范圍.22.(10分)已知圓O經過橢圓C:的兩個焦點以及兩個頂點,且點在橢圓C上.求橢圓C的方程;若直線l與圓O相切,與橢圓C交于M、N兩點,且,求直線l的傾斜角.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】試題分析:集合考點:集合間的關系2、B【解析】試題分析:該幾何體上面是長方體,下面是四棱柱;長方體的體積,四棱柱的底面是梯形,體積為,因此總的體積.考點:三視圖和幾何體的體積.3、B【解析】
由平面向量垂直的數量積關系化簡,即可由平面向量數量積定義求得與的夾角.【詳解】根據平面向量數量積的垂直關系可得,,所以,即,由平面向量數量積定義可得,所以,而,即與的夾角為.故選:B【點睛】本題考查了平面向量數量積的運算,平面向量夾角的求法,屬于基礎題.4、B【解析】
根據古典概型的概率求法,先得到從八卦中任取兩卦基本事件的總數,再找出這兩卦的六根線中恰有四根陰線的基本事件數,代入公式求解.【詳解】從八卦中任取兩卦基本事件的總數種,這兩卦的六根線中恰有四根陰線的基本事件數有6種,分別是(巽,坤),(兌,坤),(離,坤),(震,艮),(震,坎),(坎,艮),所以這兩卦的六根線中恰有四根陰線的概率是.故選:B【點睛】本題主要考查古典概型的概率,還考查了運算求解的能力,屬于基礎題.5、B【解析】
計算拋物線的交點為,代入計算得到答案.【詳解】可化為,焦點坐標為,故.故選:.【點睛】本題考查了拋物線的焦點,屬于簡單題.6、A【解析】
先求出平移后的函數解析式,結合圖像的對稱性和得到A和.【詳解】因為關于軸對稱,所以,所以,的最小值是.,則,所以.【點睛】本題主要考查三角函數的圖像變換及性質.平移圖像時需注意x的系數和平移量之間的關系.7、C【解析】
根據抽樣方式的特征,可判斷①;根據相關系數的性質,可判斷②;根據獨立性檢驗的方法和步驟,可判斷③.【詳解】①根據抽樣是間隔相同,且樣本間無明顯差異,故①應是系統抽樣,即①為假命題;②兩個隨機變量相關性越強,則相關系數的絕對值越接近于1;兩個隨機變量相關性越弱,則相關系數的絕對值越接近于0;故②為真命題;③對分類變量與的隨機變量的觀測值來說,越小,“與有關系”的把握程度越小,故③為假命題.故選:.【點睛】本題以命題的真假判斷為載體考查了抽樣方法、相關系數、獨立性檢驗等知識點,屬于基礎題.8、C【解析】
①舉反例,如直線x、y、z位于正方體的三條共點棱時②用垂直于同一平面的兩直線平行判斷.③用垂直于同一直線的兩平面平行判斷.④舉例,如x、y、z位于正方體的三個共點側面時.【詳解】①當直線x、y、z位于正方體的三條共點棱時,不正確;②因為垂直于同一平面的兩直線平行,正確;③因為垂直于同一直線的兩平面平行,正確;④如x、y、z位于正方體的三個共點側面時,不正確.故選:C.【點睛】此題考查立體幾何中線面關系,選擇題一般可通過特殊值法進行排除,屬于簡單題目.9、C【解析】
利用正方體將三視圖還原,觀察可得最長棱為AD,算出長度.【詳解】幾何體的直觀圖如圖所示,易得最長的棱長為故選:C.【點睛】本題考查了三視圖還原幾何體的問題,其中利用正方體作襯托是關鍵,屬于基礎題.10、C【解析】
畫出可行域和目標函數,根據平移得到最大值.【詳解】若實數x,y滿足條件,目標函數如圖:當時函數取最大值為故答案選C【點睛】求線性目標函數的最值:當時,直線過可行域且在軸上截距最大時,值最大,在軸截距最小時,z值最小;當時,直線過可行域且在軸上截距最大時,值最小,在軸上截距最小時,值最大.11、C【解析】
聯立方程解得M(3,),根據MN⊥l得|MN|=|MF|=4,得到△MNF是邊長為4的等邊三角形,計算距離得到答案.【詳解】依題意得F(1,0),則直線FM的方程是y=(x-1).由得x=或x=3.由M在x軸的上方得M(3,),由MN⊥l得|MN|=|MF|=3+1=4又∠NMF等于直線FM的傾斜角,即∠NMF=60°,因此△MNF是邊長為4的等邊三角形點M到直線NF的距離為故選:C.【點睛】本題考查了直線和拋物線的位置關系,意在考查學生的計算能力和轉化能力.12、A【解析】
根據排除,,利用極限思想進行排除即可.【詳解】解:函數的定義域為,恒成立,排除,,當時,,當,,排除,故選:.【點睛】本題主要考查函數圖象的識別和判斷,利用函數值的符號以及極限思想是解決本題的關鍵,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、3【解析】
分別用1和進行分類討論即可【詳解】當第一個因式取1時,第二個因式應取含的項,則對應系數為:;當第一個因式取時,第二個因式應取含的項,則對應系數為:;故的展開式中的系數為.故答案為:3【點睛】本題考查二項式定理中具體項對應系數的求解,屬于基礎題14、【解析】
根據圖像歸納,根據等差數列求和公式得到答案.【詳解】根據圖像:,,故,故.故答案為:.【點睛】本題考查了等差數列的應用,意在考查學生的計算能力和應用能力.15、【解析】
因為,由二倍角公式得到,故得到.故答案為.16、192【解析】
根據題意,分步進行分析:①,在三對父子中任選1對,安排在相鄰的位置上,②,將剩下的4人安排在剩下的4個位置,要求父子不能坐在相鄰的位置,由分步計數原理計算可得答案.【詳解】根據題意,分步進行分析:①,在三對父子中任選1對,有3種選法,由圖可得相鄰的位置有4種情況,將選出的1對父子安排在相鄰的位置,有種安排方法;②,將剩下的4人安排在剩下的4個位置,要求父子不能坐在相鄰的位置,有種安排方法,則有且僅有一對父子是相鄰而坐的坐法種;故答案為:【點睛】本題考查排列、組合的應用,涉及分步計數原理的應用,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(Ⅰ),(Ⅱ)見解析【解析】
(1)根據導數的運算法則,求出函數的導數,利用切線方程求出切線的斜率及切點,利用函數在切點處的導數值為曲線切線的斜率及切點也在曲線上,列出方程組,求出,值;(2)首先將不等式轉化為函數,即將不等式右邊式子左移,得,構造函數并判斷其符號,這里應注意的取值范圍,從而證明不等式.【詳解】解:(1)由于直線的斜率為,且過點,故即解得,.(2)由(1)知,所以.考慮函數,,則.而,故當時,,所以,即.【點睛】本題考查了利用導數求切線的斜率,利用函數的導數研究函數的單調性、和最值問題,以及不等式證明問題,考查了分析及解決問題的能力,其中,不等式問題中結合構造函數實現正確轉換為最大值和最小值問題是關鍵.18、(1),;(2)或【解析】
(1)將曲線的極坐標方程和直線的參數方程化為直角坐標方程,聯立方程,即可求得曲線與的交點坐標;(2)由直線的普通方程為,故上任意一點,根據點到直線距離公式求得到直線的距離,根據三角函數的有界性,即可求得答案.【詳解】(1),.由,得,曲線的直角坐標方程為.當時,直線的普通方程為由解得或.從而與的交點坐標為,.(2)由題意知直線的普通方程為,的參數方程為(為參數)故上任意一點到的距離為則.當時,的最大值為所以;當時,的最大值為,所以.綜上所述,或【點睛】解題關鍵是掌握極坐標和參數方程化為直角坐標方程的方法,和點到直線距離公式,考查了分析能力和計算能力,屬于中檔題.19、(1),定義域是.(2)百萬【解析】
(1)以為原點,直線為軸建立如圖所示的直角坐標系,設,利用直線與圓相切得到,再代入這一關系中,即可得答案;(2)利用導數求函數的最小值,即可得答案;【詳解】以為原點,直線為軸建立如圖所示的直角坐標系.設,則,,.因為,所以直線的方程為,即,因為圓與相切,所以,即,從而得,在直線的方程中,令,得,所以,所以當時,,設銳角滿足,則,所以關于的函數是,定義域是.(2)要使建造此通道費用最少,只要通道的長度即最小.令,得,設銳角,滿足,得.列表:0減極小值增所以時,,所以建造此通道的最少費用至少為百萬元.【點睛】本題考查三角函數模型的實際應用、利用導數求函數的最小值,考查函數與方程思想、轉化與化歸思想,考查邏輯推理能力、運算求解能力.20、(1)單調遞減區間為,單調遞增區間為;(2)【解析】
(1)求導,根據導數與函數單調性關系即可求出.(2)解法一:分類討論:當時,觀察式子可得恒成立;當時,利用導數判斷函數為單調遞增,可知;當時,令,由,,根據零點存在性定理可得,進而可得在上,單調遞減,即不滿足題意;解法二:通過分離參數可知條件等價于恒成立,進而記,問題轉化為求在上的最小值問題,通過二次求導,結合洛比達法則計算可得結論.【詳解】(1)當,,,,令,解得,當時,,當時,,在上單調遞減,在上單調遞增.(2)解法一:當時,函數,若時,此時對任意都有,所以恒成立;若時,對任意都有,,所以,所以在上為增函數,所以,即時滿足題意;若時,令,則,所以在上單調遞增,,,可知,一定存在使得,且當時,,所以在上,單調遞減,從而有時,,不滿足題意;綜上可知,實數a的取值范圍為.解法二:當時,函數,又當時,,對一切恒成立等價于恒成立,記,其中,則,令,則,在上單調遞增,,恒成立,從而在上單調遞增,,由洛比達法則可知,,,解得.實數a的取值范圍為.【點睛】本題考查利用導數研究函數的單調性與不等式恒成立問題,考查了分類與整合的解題思想,涉及分離參數法等技巧、涉及到洛比達法則等知識,注意解題方法的積累,屬于難題.21、(1);(2).【解析】
(1)將函數的解析式表示為分段函數,然后分、、三段求解不等式,綜合可得出不等式的解集;(2)求出函數的最大值,由題意得出,解此不等式即可得出實數的取值范圍.【詳解】.(1)當時,由,解得,此時;當時,由,解得,此時;當時,由,解得,此時.綜上所述
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 產科接種各項管理制度
- 企業基本安全管理制度
- 企業消毒衛生管理制度
- 云南宿舍日常管理制度
- 人力服務公司管理制度
- vivo員工管理制度
- 企業人員聘用管理制度
- 企業物業完善管理制度
- 中小商貿公司管理制度
- 鄉鎮廣播設備管理制度
- 浙江省紹興市諸暨市2023-2024學年五年級下學期期末數學試卷
- 重慶市大足縣2023-2024學年四年級數學第二學期期末聯考試題含解析
- 煤礦調度智能化培訓課件
- 基于PLC的啤酒發酵自動控制系統
- 重慶市沙坪壩區2022-2023學年八年級下學期期末英語試題
- 思辨與創新智慧樹知到期末考試答案章節答案2024年復旦大學
- 手術室-標準側臥位擺放
- (正式版)JBT 9229-2024 剪叉式升降工作平臺
- 合伙人退出協議書
- (高清版)DZT 0208-2020 礦產地質勘查規范 金屬砂礦類
- 2024年春江蘇開放大學先進制造技術第一次過程性考核作業答案
評論
0/150
提交評論