




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
湖北省武漢第二中學2024年高考仿真卷數學試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.圓心為且和軸相切的圓的方程是()A. B.C. D.2.在很多地鐵的車廂里,頂部的扶手是一根漂亮的彎管,如下圖所示.將彎管形狀近似地看成是圓弧,已知彎管向外的最大突出(圖中)有,跨接了6個坐位的寬度(),每個座位寬度為,估計彎管的長度,下面的結果中最接近真實值的是()A. B. C. D.3.已知非零向量滿足,若夾角的余弦值為,且,則實數的值為()A. B. C.或 D.4.要得到函數的圖像,只需把函數的圖像()A.向左平移個單位 B.向左平移個單位C.向右平移個單位 D.向右平移個單位5.已知不等式組表示的平面區域的面積為9,若點,則的最大值為()A.3 B.6 C.9 D.126.若集合,,則()A. B. C. D.7.設為等差數列的前項和,若,,則的最小值為()A. B. C. D.8.已知拋物線上一點的縱坐標為4,則點到拋物線焦點的距離為()A.2 B.3 C.4 D.59.已知拋物線的焦點為,是拋物線上兩個不同的點,若,則線段的中點到軸的距離為()A.5 B.3 C. D.210.如圖是一個算法流程圖,則輸出的結果是()A. B. C. D.11.設復數,則=()A.1 B. C. D.12.已知α,β是兩平面,l,m,n是三條不同的直線,則不正確命題是()A.若m⊥α,n//α,則m⊥n B.若m//α,n//α,則m//nC.若l⊥α,l//β,則α⊥β D.若α//β,lβ,且l//α,則l//β二、填空題:本題共4小題,每小題5分,共20分。13.已知函數,若函數有個不同的零點,則的取值范圍是___________.14.在中,角,,的對邊分別是,,,若,,則的面積的最大值為______.15.在編號為1,2,3,4,5且大小和形狀均相同的五張卡片中,一次隨機抽取其中的三張,則抽取的三張卡片編號之和是偶數的概率為________.16.《九章算術》是中國古代的數學名著,其中《方田》一章給出了弧田面積的計算公式.如圖所示,弧田是由圓弧AB和其所對弦AB圍成的圖形,若弧田的弧AB長為4π,弧所在的圓的半徑為6,則弧田的弦AB長是__________,弧田的面積是__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知正實數滿足.(1)求的最小值.(2)證明:18.(12分)某中學的甲、乙、丙三名同學參加高校自主招生考試,每位同學彼此獨立的從五所高校中任選2所.(1)求甲、乙、丙三名同學都選高校的概率;(2)若已知甲同學特別喜歡高校,他必選校,另在四校中再隨機選1所;而同學乙和丙對五所高校沒有偏愛,因此他們每人在五所高校中隨機選2所.(i)求甲同學選高校且乙、丙都未選高校的概率;(ii)記為甲、乙、丙三名同學中選高校的人數,求隨機變量的分布列及數學期望.19.(12分)已知等差數列中,,數列的前項和.(1)求;(2)若,求的前項和.20.(12分)已知函數(1)求單調區間和極值;(2)若存在實數,使得,求證:21.(12分)已知函數,其中為自然對數的底數.(1)若函數在區間上是單調函數,試求的取值范圍;(2)若函數在區間上恰有3個零點,且,求的取值范圍.22.(10分)已知中,角所對邊的長分別為,且(1)求角的大小;(2)求的值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】
求出所求圓的半徑,可得出所求圓的標準方程.【詳解】圓心為且和軸相切的圓的半徑為,因此,所求圓的方程為.故選:A.【點睛】本題考查圓的方程的求解,一般求出圓的圓心和半徑,考查計算能力,屬于基礎題.2、B【解析】
為彎管,為6個座位的寬度,利用勾股定理求出弧所在圓的半徑為,從而可得弧所對的圓心角,再利用弧長公式即可求解.【詳解】如圖所示,為彎管,為6個座位的寬度,則設弧所在圓的半徑為,則解得可以近似地認為,即于是,長所以是最接近的,其中選項A的長度比還小,不可能,因此只能選B,260或者由,所以弧長.故選:B【點睛】本題考查了弧長公式,需熟記公式,考查了學生的分析問題的能力,屬于基礎題.3、D【解析】
根據向量垂直則數量積為零,結合以及夾角的余弦值,即可求得參數值.【詳解】依題意,得,即.將代入可得,,解得(舍去).故選:D.【點睛】本題考查向量數量積的應用,涉及由向量垂直求參數值,屬基礎題.4、A【解析】
運用輔助角公式將兩個函數公式進行變形得以及,按四個選項分別對變形,整理后與對比,從而可選出正確答案.【詳解】解:.對于A:可得.故選:A.【點睛】本題考查了三角函數圖像平移變換,考查了輔助角公式.本題的易錯點有兩個,一個是混淆了已知函數和目標函數;二是在平移時,忘記乘了自變量前的系數.5、C【解析】
分析:先畫出滿足約束條件對應的平面區域,利用平面區域的面積為9求出,然后分析平面區域多邊形的各個頂點,即求出邊界線的交點坐標,代入目標函數求得最大值.詳解:作出不等式組對應的平面區域如圖所示:則,所以平面區域的面積,解得,此時,由圖可得當過點時,取得最大值9,故選C.點睛:該題考查的是有關線性規劃的問題,在求解的過程中,首先需要正確畫出約束條件對應的可行域,之后根據目標函數的形式,判斷z的幾何意義,之后畫出一條直線,上下平移,判斷哪個點是最優解,從而聯立方程組,求得最優解的坐標,代入求值,要明確目標函數的形式大體上有三種:斜率型、截距型、距離型;根據不同的形式,應用相應的方法求解.6、A【解析】
用轉化的思想求出中不等式的解集,再利用并集的定義求解即可.【詳解】解:由集合,解得,則故選:.【點睛】本題考查了并集及其運算,分式不等式的解法,熟練掌握并集的定義是解本題的關鍵.屬于基礎題.7、C【解析】
根據已知條件求得等差數列的通項公式,判斷出最小時的值,由此求得的最小值.【詳解】依題意,解得,所以.由解得,所以前項和中,前項的和最小,且.故選:C【點睛】本小題主要考查等差數列通項公式和前項和公式的基本量計算,考查等差數列前項和最值的求法,屬于基礎題.8、D【解析】試題分析:拋物線焦點在軸上,開口向上,所以焦點坐標為,準線方程為,因為點A的縱坐標為4,所以點A到拋物線準線的距離為,因為拋物線上的點到焦點的距離等于到準線的距離,所以點A與拋物線焦點的距離為5.考點:本小題主要考查應用拋物線定義和拋物線上點的性質拋物線上的點到焦點的距離,考查學生的運算求解能力.點評:拋物線上的點到焦點的距離等于到準線的距離,這條性質在解題時經常用到,可以簡化運算.9、D【解析】
由拋物線方程可得焦點坐標及準線方程,由拋物線的定義可知,繼而可求出,從而可求出的中點的橫坐標,即為中點到軸的距離.【詳解】解:由拋物線方程可知,,即,.設則,即,所以.所以線段的中點到軸的距離為.故選:D.【點睛】本題考查了拋物線的定義,考查了拋物線的方程.本題的關鍵是由拋物線的定義求得兩點橫坐標的和.10、A【解析】
執行程序框圖,逐次計算,根據判斷條件終止循環,即可求解,得到答案.【詳解】由題意,執行上述的程序框圖:第1次循環:滿足判斷條件,;第2次循環:滿足判斷條件,;第3次循環:滿足判斷條件,;不滿足判斷條件,輸出計算結果,故選A.【點睛】本題主要考查了循環結構的程序框圖的結果的計算與輸出,其中解答中執行程序框圖,逐次計算,根據判斷條件終止循環是解答的關鍵,著重考查了運算與求解能力,屬于基礎題.11、A【解析】
根據復數的除法運算,代入化簡即可求解.【詳解】復數,則故選:A.【點睛】本題考查了復數的除法運算與化簡求值,屬于基礎題.12、B【解析】
根據線面平行、線面垂直和空間角的知識,判斷A選項的正確性.由線面平行有關知識判斷B選項的正確性.根據面面垂直的判定定理,判斷C選項的正確性.根據面面平行的性質判斷D選項的正確性.【詳解】A.若,則在中存在一條直線,使得,則,又,那么,故正確;B.若,則或相交或異面,故不正確;C.若,則存在,使,又,則,故正確.D.若,且,則或,又由,故正確.故選:B【點睛】本小題主要考查空間線線、線面和面面有關命題真假性的判斷,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
作出函數的圖象及直線,如下圖所示,因為函數有個不同的零點,所以由圖象可知,,,所以.14、【解析】
化簡得到,,根據余弦定理和均值不等式得到,根據面積公式計算得到答案.【詳解】,即,,故.根據余弦定理:,即.當時等號成立,故.故答案為:.【點睛】本題考查了三角恒等變換,余弦定理,均值不等式,面積公式,意在考查學生的綜合應用能力和計算能力.15、【解析】
先求出所有的基本事件個數,再求出“抽取的三張卡片編號之和是偶數”這一事件包含的基本事件個數,利用古典概型的概率計算公式即可算出結果.【詳解】一次隨機抽取其中的三張,所有基本事件為:1,2,3;1,2,4;1,2,5;1,3,4;1,3,5;1,4,5;2,3,4;2,3,5;2,4,5;3,4,5;共有10個,其中“抽取的三張卡片編號之和是偶數”包含6個基本事件,因此“抽取的三張卡片編號之和是偶數”的概率為:.故答案為:.【點睛】本題考查了古典概型及其概率計算公式,屬于基礎題.16、612π﹣9【解析】
過作,交于,先求得圓心角的弧度數,然后解解三角形求得的長.利用扇形面積減去三角形的面積,求得弧田的面積.【詳解】∵如圖,弧田的弧AB長為4π,弧所在的圓的半徑為6,過作,交于,根據圓的幾何性質可知,垂直平分.∴α=∠AOB==,可得∠AOD=,OA=6,∴AB=2AD=2OAsin=2×=6,∴弧田的面積S=S扇形OAB﹣S△OAB=4π×6﹣=12π﹣9.故答案為:6,12π﹣9.【點睛】本小題主要考查弓形弦長和弓形面積的計算,考查中國古代數學文化,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)見解析【解析】
(1)利用乘“1”法,結合基本不等式求得結果.(2)直接利用基本不等式及乘“1”法,證明即可.【詳解】(1)因為,所以因為,所以(當且僅當,即時等號成立),所以(2)證明:因為,所以故(當且僅當時,等號成立)【點睛】本題考查了基本不等式的應用,考查了乘“1”法的技巧,考查了推理論證能力,屬于中檔題.18、(1)(2)(i)(ii)分布列見解析,【解析】
(1)先計算甲、乙、丙同學分別選擇D高校的概率,利用事件的獨立性即得解;(2)(i)分別計算每個事件的概率,再利用事件的獨立性即得解;(ii),利用事件的獨立性,分別計算對應的概率,列出分布列,計算數學期望即得解.【詳解】(1)甲從五所高校中任選2所,共有共10種情況,甲、乙、丙同學都選高校,共有四種情況,甲同學選高校的概率為,因此乙、丙兩同學選高校的概率為,因為每位同學彼此獨立,所以甲、乙、丙三名同學都選高校的概率為.(2)(i)甲同學必選校且選高校的概率為,乙未選高校的概率為,丙未選高校的概率為,因為每位同學彼此獨立,所以甲同學選高校且乙、丙都未選高校的概率為.(ii),因此,.即的分布列為0123因此數學期望為.【點睛】本題考查了事件獨立性的應用和隨機變量的分布列和期望,考查了學生綜合分析,概念理解,實際應用,數學運算的能力,屬于中檔題.19、(1),;(2).【解析】
(1)由條件得出方程組,可求得的通項,當時,,可得,當時,,得出是以1為首項,2為公比的等比數列,可求得的通項;(2)由(1)可知,,分n為偶數和n為奇數分別求得.【詳解】(1)由條件知,,,當時,,即,當時,,是以1為首項,2為公比的等比數列,;(2)由(1)可知,,當n為偶數時,當n為奇數時,綜上,【點睛】本題考查等差數列和等比數列的通項的求得,以及其前n項和,注意分n為偶數和n為奇數兩種情況分別求得其數列的和,屬于中檔題.20、(1)時,函數單調遞增,,函數單調遞減,;(2)見解析【解析】
(1)求出函數的定義域與導函數,利用導數求函數的單調區間,即可得到函數的極值;(2)易得且,要證明,即證,即證,即對恒成立,構造函數,,利用導數研究函數的單調性與最值,即可得證;【詳解】解:(1)因為定義域為,所以,時,,即在和上單調遞增,當時,,即函數在單調遞減,所以在處取得極小值,在處取得極大值;,;(2)易得,要證明,即證,即證即證對恒成立,令,,則令,解得,即在上單調遞增;令,解得,即在上單調遞減;則在取得極小值,也就是最小值,從而結論得證.【點睛】本題考查利用導數研究函數的單調性與極值,利用導數證明不等式,考查運算求解能力,考查函數與方程思想,屬于中檔題.21、(1);(
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- VB編程能力的試題與答案提升
- 學習大數據分析的工具與方法試題及答案
- 未來企業戰略與風險管理考核要點試題及答案
- 地理信息系統的職業路徑計劃
- 2025租賃設備的租賃合同
- 數據分析工具試題及答案
- 【成都】2025年上半年成都大學附屬醫院公開考試招聘工作人員24人筆試歷年典型考題及考點剖析附帶答案詳解
- 如何通過工作計劃激勵團隊
- 行政法學資源配置試題及答案
- 實現業務多元化的工作策略計劃
- 企業EHS風險管理基礎智慧樹知到期末考試答案2024年
- 建設工程方案設計管理辦法
- 《鋼鐵是怎樣煉成的》選擇題100題(含答案)
- 2024年浙江樂清市金融控股有限公司招聘筆試參考題庫含答案解析
- 可穿戴式傳感器與電子皮膚
- 《工程結構抗震設計》課件 第10章-地下建筑抗震設計
- 汗皰疹的健康宣教
- 家庭生態農場的設計方案
- 應急演練評估表模板
- 常州大學課程設計報告
- 勞務外包服務項目投標方案(技術方案)
評論
0/150
提交評論