




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023-2024學年安徽省潛山市第四中學中考四模數學試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.一次函數y=kx+k(k≠0)和反比例函數在同一直角坐標系中的圖象大致是()A. B. C. D.2.如圖,點A、B、C、D在⊙O上,∠AOC=120°,點B是弧AC的中點,則∠D的度數是()A.60° B.35° C.30.5° D.30°3.如圖,A、B、C是⊙O上的三點,∠B=75°,則∠AOC的度數是()A.150° B.140° C.130° D.120°4.x=1是關于x的方程2x﹣a=0的解,則a的值是()A.﹣2 B.2 C.﹣1 D.15.在,,,這四個數中,比小的數有()個.A. B. C. D.6.估計﹣2的值應該在()A.﹣1﹣0之間 B.0﹣1之間 C.1﹣2之間 D.2﹣3之間7.方程有兩個實數根,則k的取值范圍是().A.k≥1 B.k≤1 C.k>1 D.k<18.如圖,下列四個圖形是由已知的四個立體圖形展開得到的,則對應的標號是A. B. C. D.9.若關于x的一元二次方程(m-1)x2+x+m2-5m+3=0有一個根為1,則m的值為A.1 B.3 C.0 D.1或310.邊長相等的正三角形和正六邊形的面積之比為()A.1∶3 B.2∶3 C.1∶6 D.1∶11.若一個三角形的兩邊長分別為5和7,則該三角形的周長可能是()A.12 B.14 C.15 D.2512.下列運算正確的是()A.a2?a3=a6 B.()﹣1=﹣2 C.=±4 D.|﹣6|=6二、填空題:(本大題共6個小題,每小題4分,共24分.)13.因式分解:a3b﹣ab3=_____.14.數學的美無處不在.數學家們研究發現,彈撥琴弦發出聲音的音調高低,取決于弦的長度,繃得一樣緊的幾根弦,如果長度的比能夠表示成整數的比,發出的聲音就比較和諧.例如,三根弦長度之比是15:12:10,把它們繃得一樣緊,用同樣的力彈撥,它們將分別發出很調和的樂聲do、mi、so,研究15、12、10這三個數的倒數發現:.我們稱15、12、10這三個數為一組調和數.現有一組調和數:x,5,3(x>5),則x的值是.15.若點A(3,﹣4)、B(﹣2,m)在同一個反比例函數的圖象上,則m的值為.16.方程組的解一定是方程_____與_____的公共解.17.不等式的解集是________________18.將2.05×10﹣3用小數表示為__.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)如圖,已知AB是⊙O的直徑,點C、D在⊙O上,點E在⊙O外,∠EAC=∠D=60°.求∠ABC的度數;求證:AE是⊙O的切線;當BC=4時,求劣弧AC的長.20.(6分)我市正在創建“全國文明城市”,某校擬舉辦“創文知識”搶答賽,欲購買A、B兩種獎品以鼓勵搶答者.如果購買A種20件,B種15件,共需380元;如果購買A種15件,B種10件,共需280元.A、B兩種獎品每件各多少元?現要購買A、B兩種獎品共100件,總費用不超過900元,那么A種獎品最多購買多少件?21.(6分)有甲、乙兩個不透明的布袋,甲袋中有兩個完全相同的小球,分別標有數字1和-1;乙袋中有三個完全相同的小球,分別標有數字-1、0和1.小麗先從甲袋中隨機取出一個小球,記錄下小球上的數字為x;再從乙袋中隨機取出一個小球,記錄下小球上的數字為y,設點P的坐標為(x,y).(1)請用表格或樹狀圖列出點P所有可能的坐標;(1)求點P在一次函數y=x+1圖象上的概率.22.(8分)如圖,AB為⊙O的直徑,點E在⊙O上,C為的中點,過點C作直線CD⊥AE于D,連接AC、BC.(1)試判斷直線CD與⊙O的位置關系,并說明理由;(2)若AD=2,AC=,求AB的長.23.(8分)如圖,在△ABC中,AB=AC,CD是∠ACB的平分線,DE∥BC,交AC于點E.求證:DE=CE.若∠CDE=35°,求∠A的度數.24.(10分)如圖所示,在長和寬分別是a、b的矩形紙片的四個角都剪去一個邊長為x的正方形.(1)用a,b,x表示紙片剩余部分的面積;(2)當a=6,b=4,且剪去部分的面積等于剩余部分的面積時,求正方形的邊長.25.(10分)某工廠準備用圖甲所示的A型正方形板材和B型長方形板材,制作成圖乙所示的豎式和橫式兩種無蓋箱子.若該工廠準備用不超過10000元的資金去購買A,B兩種型號板材,并全部制作豎式箱子,已知A型板材每張30元,B型板材每張90元,求最多可以制作豎式箱子多少只?若該工廠倉庫里現有A型板材65張、B型板材110張,用這批板材制作兩種類型的箱子,問制作豎式和橫式兩種箱子各多少只,恰好將庫存的板材用完?若該工廠新購得65張規格為的C型正方形板材,將其全部切割成A型或B型板材不計損耗,用切割成的板材制作兩種類型的箱子,要求豎式箱子不少于20只,且材料恰好用完,則能制作兩種箱子共______只26.(12分)如圖,已知點A,B,C在半徑為4的⊙O上,過點C作⊙O的切線交OA的延長線于點D.(Ⅰ)若∠ABC=29°,求∠D的大??;(Ⅱ)若∠D=30°,∠BAO=15°,作CE⊥AB于點E,求:①BE的長;②四邊形ABCD的面積.27.(12分)如圖,在Rt△ABC中,點O在斜邊AB上,以O為圓心,OB為半徑作圓,分別與BC,AB相交于點D,E,連結AD.已知∠CAD=∠B.求證:AD是⊙O的切線.若BC=8,tanB=,求⊙O的半徑.
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、C【解析】A、由反比例函數的圖象在一、三象限可知k>0,由一次函數的圖象過二、四象限可知k<0,兩結論相矛盾,故選項錯誤;B、由反比例函數的圖象在二、四象限可知k<0,由一次函數的圖象與y軸交點在y軸的正半軸可知k>0,兩結論相矛盾,故選項錯誤;C、由反比例函數的圖象在二、四象限可知k<0,由一次函數的圖象過二、三、四象限可知k<0,兩結論一致,故選項正確;D、由反比例函數的圖象在一、三象限可知k>0,由一次函數的圖象與y軸交點在y軸的負半軸可知k<0,兩結論相矛盾,故選項錯誤,故選C.2、D【解析】
根據圓心角、弧、弦的關系定理得到∠AOB=∠AOC,再根據圓周角定理即可解答.【詳解】連接OB,∵點B是弧的中點,∴∠AOB=∠AOC=60°,由圓周角定理得,∠D=∠AOB=30°,故選D.【點睛】此題考查了圓心角、弧、弦的關系定理,解題關鍵在于利用好圓周角定理.3、A【解析】
直接根據圓周角定理即可得出結論.【詳解】∵A、B、C是⊙O上的三點,∠B=75°,∴∠AOC=2∠B=150°.故選A.4、B【解析】試題解析:把x=1代入方程1x-a=0得1-a=0,解得a=1.故選B.考點:一元一次方程的解.5、B【解析】
比較這些負數的絕對值,絕對值大的反而小.【詳解】在﹣4、﹣、﹣1、﹣這四個數中,比﹣2小的數是是﹣4和﹣.故選B.【點睛】本題主要考查負數大小的比較,解題的關鍵時負數比較大小時,絕對值大的數反而小.6、A【解析】
直接利用已知無理數得出的取值范圍,進而得出答案.【詳解】解:∵1<<2,∴1-2<﹣2<2-2,∴-1<﹣2<0即-2在-1和0之間.故選A.【點睛】此題主要考查了估算無理數大小,正確得出的取值范圍是解題關鍵.7、D【解析】當k=1時,原方程不成立,故k≠1,當k≠1時,方程為一元二次方程.∵此方程有兩個實數根,∴,解得:k≤1.綜上k的取值范圍是k<1.故選D.8、B【解析】
根據常見幾何體的展開圖即可得.【詳解】由展開圖可知第一個圖形是②正方體的展開圖,第2個圖形是①圓柱體的展開圖,第3個圖形是③三棱柱的展開圖,第4個圖形是④四棱錐的展開圖,故選B【點睛】本題考查的是幾何體,熟練掌握幾何體的展開面是解題的關鍵.9、B【解析】
直接把x=1代入已知方程即可得到關于m的方程,解方程即可求出m的值.【詳解】∵x=1是方程(m﹣1)x2+x+m2﹣5m+3=0的一個根,∴(m﹣1)+1+m2﹣5m+3=0,∴m2﹣4m+3=0,∴m=1或m=3,但當m=1時方程的二次項系數為0,∴m=3.故答案選B.【點睛】本題考查了一元二次方程的解,解題的關鍵是熟練的掌握一元二次方程的運算.10、C【解析】解:設正三角形的邊長為1a,則正六邊形的邊長為1a.過A作AD⊥BC于D,則∠BAD=30°,AD=AB?cos30°=1a?=a,∴S△ABC=BC?AD=×1a×a=a1.連接OA、OB,過O作OD⊥AB.∵∠AOB==20°,∴∠AOD=30°,∴OD=OB?cos30°=1a?=a,∴S△ABO=BA?OD=×1a×a=a1,∴正六邊形的面積為:2a1,∴邊長相等的正三角形和正六邊形的面積之比為:a1:2a1=1:2.故選C.點睛:本題主要考查了正三角形與正六邊形的性質,根據已知利用解直角三角形知識求出正六邊形面積是解題的關鍵.11、C【解析】
先根據三角形三條邊的關系求出第三條邊的取值范圍,進而求出周長的取值范圍,從而可的求出符合題意的選項.【詳解】∴三角形的兩邊長分別為5和7,∴2<第三條邊<12,∴5+7+2<三角形的周長<5+7+12,即14<三角形的周長<24,故選C.【點睛】本題考查了三角形三條邊的關系:三角形任意兩邊之和大于第三邊,任意兩邊之差小于第三邊,據此解答即可.12、D【解析】
運用正確的運算法則即可得出答案.【詳解】A、應該為a5,錯誤;B、為2,錯誤;C、為4,錯誤;D、正確,所以答案選擇D項.【點睛】本題考查了四則運算法則,熟悉掌握是解決本題的關鍵.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、ab(a+b)(a﹣b)【解析】
先提取公因式ab,然后再利用平方差公式分解即可.【詳解】a3b﹣ab3=ab(a2﹣b2)=ab(a+b)(a﹣b),故答案為ab(a+b)(a﹣b).【點睛】本題考查了提公因式法與公式法的綜合運用,熟練掌握因式分解的方法是解本題的關鍵.分解因式的步驟一般為:一提(公因式),二套(公式),三徹底.14、1.【解析】依據調和數的意義,有-=-,解得x=1.15、1【解析】
設反比例函數解析式為y=,根據反比例函數圖象上點的坐標特征得到k=3×(﹣4)=﹣2m,然后解關于m的方程即可.【詳解】解:設反比例函數解析式為y=,根據題意得k=3×(﹣4)=﹣2m,解得m=1.故答案為1.考點:反比例函數圖象上點的坐標特征.16、5x﹣3y=83x+8y=9【解析】
方程組的解一定是方程5x﹣3y=8與3x+8y=9的公共解.故答案為5x﹣3y=8;3x+8y=9.17、【解析】
首先去分母進而解出不等式即可.【詳解】去分母得,1-2x>15移項得,-2x>15-1合并同類項得,-2x>14系數化為1,得x<-7.故答案為x<-7.【點睛】此題考查了解一元一次不等式,解不等式要依據不等式的基本性質:(1)不等式的兩邊同時加上或減去同一個數或整式不等號的方向不變;(2)不等式的兩邊同時乘以或除以同一個正數不等號的方向不變;(3)不等式的兩邊同時乘以或除以同一個負數不等號的方向改變.18、0.1【解析】試題解析:原式=2.05×10-3=0.1.【點睛】本題考查了科學記數法-原數,用科學記數法表示的數還原成原數時,n>0時,n是幾,小數點就向右移幾位;n<0時,n是幾,小數點就向左移幾位.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)60°;(2)證明略;(3)【解析】
(1)根據∠ABC與∠D都是劣弧AC所對的圓周角,利用圓周角定理可證出∠ABC=∠D=60°;
(2)根據AB是⊙O的直徑,利用直徑所對的圓周角是直角得到∠ACB=90°,結合∠ABC=60°求得∠BAC=30°,從而推出∠BAE=90°,即OA⊥AE,可得AE是⊙O的切線;
(3)連結OC,證出△OBC是等邊三角形,算出∠BOC=60°且⊙O的半徑等于4,可得劣弧AC所對的圓心角∠AOC=120°,再由弧長公式加以計算,可得劣弧AC的長.【詳解】(1)∵∠ABC與∠D都是弧AC所對的圓周角,∴∠ABC=∠D=60°;(2)∵AB是⊙O的直徑,∴∠ACB=90°.∴∠BAC=30°,∴∠BAE=∠BAC+∠EAC=30°+60°=90°,即BA⊥AE,∴AE是⊙O的切線;(3)如圖,連接OC,∵OB=OC,∠ABC=60°,∴△OBC是等邊三角形,∴OB=BC=4,∠BOC=60°,∴∠AOC=120°,∴劣弧AC的長為==.【點睛】本題考查了切線長定理及弧長公式,熟練掌握定理及公式是解題的關鍵.20、(1)A種獎品每件16元,B種獎品每件4元.(2)A種獎品最多購買41件.【解析】【分析】(1)設A種獎品每件x元,B種獎品每件y元,根據“如果購買A種20件,B種15件,共需380元;如果購買A種15件,B種10件,共需280元”,即可得出關于x、y的二元一次方程組,解之即可得出結論;(2)設A種獎品購買a件,則B種獎品購買(100﹣a)件,根據總價=單價×購買數量結合總費用不超過900元,即可得出關于a的一元一次不等式,解之取其中最大的整數即可得出結論.【詳解】(1)設A種獎品每件x元,B種獎品每件y元,根據題意得:,解得:,答:A種獎品每件16元,B種獎品每件4元;(2)設A種獎品購買a件,則B種獎品購買(100﹣a)件,根據題意得:16a+4(100﹣a)≤900,解得:a≤,∵a為整數,∴a≤41,答:A種獎品最多購買41件.【點睛】本題考查了一元一次不等式的應用以及二元一次方程組的應用,解題的關鍵是:(1)找準等量關系,正確列出二元一次方程組;(2)根據不等關系,正確列出不等式.21、(1)見解析;(1)13【解析】試題分析:(1)畫出樹狀圖(或列表),根據樹狀圖(或表格)列出點P所有可能的坐標即可;(1)根據(1)的所有結果,計算出這些結果中點P在一次函數圖像上的個數,即可求得點P在一次函數圖像上的概率.試題解析:(1)畫樹狀圖:或列表如下:∴點P所有可能的坐標為(1,-1),(1,0)(1,1)(-1,-1),(-1,0)(-1,1).∵只有(1,1)與(-1,-1)這兩個點在一次函數圖像上,∴P(點P在一次函數圖像上)=.考點:用(樹狀圖或列表法)求概率.22、(1)證明見解析(2)3【解析】
(1)連接,由為的中點,得到,等量代換得到,根據平行線的性質得到,即可得到結論;(2)連接,由勾股定理得到,根據切割線定理得到,根據勾股定理得到,由圓周角定理得到,即可得到結論.【詳解】相切,連接,∵為的中點,∴,∵,∴,∴,∴,∵,∴,∴直線與相切;方法:連接,∵,,∵,∴,∵是的切線,∴,∴,∴,∵為的中點,∴,∵為的直徑,∴,∴.方法:∵,易得,∴,∴.【點睛】本題考查了直線與圓的位置關系,切線的判定和性質,圓周角定理,勾股定理,平行線的性質,切割線定理,熟練掌握各定理是解題的關鍵.23、(1)見解析;(2)40°.【解析】
(1)根據角平分線的性質可得出∠BCD=∠ECD,由DE∥BC可得出∠EDC=∠BCD,進而可得出∠EDC=∠ECD,再利用等角對等邊即可證出DE=CE;(2)由(1)可得出∠ECD=∠EDC=35°,進而可得出∠ACB=2∠ECD=70°,再根據等腰三角形的性質結合三角形內角和定理即可求出∠A的度數.【詳解】(1)∵CD是∠ACB的平分線,∴∠BCD=∠ECD.∵DE∥BC,∴∠EDC=∠BCD,∴∠EDC=∠ECD,∴DE=CE.(2)∵∠ECD=∠EDC=35°,∴∠ACB=2∠ECD=70°.∵AB=AC,∴∠ABC=∠ACB=70°,∴∠A=180°﹣70°﹣70°=40°.【點睛】本題考查了等腰三角形的判定與性質、平行線的性質以及角平分線.解題的關鍵是:(1)根據平行線的性質結合角平分線的性質找出∠EDC=∠ECD;(2)利用角平分線的性質結合等腰三角形的性質求出∠ACB=∠ABC=70°.24、(1)ab﹣4x1(1)【解析】
(1)邊長為x的正方形面積為x1,矩形面積減去4個小正方形的面積即可.(1)依據剪去部分的面積等于剩余部分的面積,列方程求出x的值即可.【詳解】解:(1)ab﹣4x1.(1)依題意有:,將a=6,b=4,代入上式,得x1=2.解得x1=,x1=(舍去).∴正方形的邊長為.25、(1)最多可以做25只豎式箱子;(2)能制作豎式、橫式兩種無蓋箱子分別為5只和30只;(3)47或1.【解析】
表示出豎式箱子所用板材數量進而得出總金額即可得出答案;設制作豎式箱子a只,橫式箱子b只,利用A型板材65張、B型板材110張,得出方程組求出答案;設裁剪出B型板材m張,則可裁A型板材張,進而得出方程組求出符合題意的答案.【詳解】解:設最多可制作豎式箱子x只,則A型板材x張,B型板材4x張,根據題意得解得.答:最多可以做25只豎式箱子.設制作豎式箱子a只,橫式箱子b只,根據題意,得,解得:.答:能制作豎式、橫式兩種無蓋箱子分別為5只和30只.設裁剪出B型板材m張,則可裁A型板材張,由題意得:,整理得,,.豎式箱子不少于20只,或22,這時,或,.則能制作兩種箱子共:或.故答案為47或1.【點睛】本題考查了一元一次不等式的應用以及二元一次方程組的應用,解題的關鍵是理解題意,列出等式.26、(1)∠D=32°;(2)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 輪胎企業綠色采購政策與供應鏈優化考核試卷
- 2024年高密度電阻率儀資金需求報告代可行性研究報告
- 數據庫設計中的對象關系映射技術試題及答案
- 網絡文學隔音寫作環境租賃協議書
- 2025年中國保健按摩椅行業市場前景預測及投資價值評估分析報告
- 高端私人飛機消毒清潔解決方案租賃協議書
- 2025年中國半球諧振陀螺儀行業市場前景預測及投資價值評估分析報告
- 智能家居設備全國代理及品牌合作授權合同
- 2025年中國辦公商業空間設計行業市場投資可行性調研報告
- 時尚購物中心品牌入駐專柜委托運營合同
- 骨科科室工作總結匯報
- 青少年網絡安全知識講座
- 三基中醫培訓試題及答案
- GB 28050-2025食品安全國家標準預包裝食品營養標簽通則
- 河北省石家莊市2025屆普通高中畢業年級教學質量檢測(二)數學試卷(含答案)
- 成人重癥患者顱內壓增高防控護理專家共識(2024版)解讀課件
- 防機械傷害培訓課件
- 智創上合-專利應用與保護知到課后答案智慧樹章節測試答案2025年春青島工學院
- 江西省部分高中學校2024-2025學年高一下學期聯考生物試卷(原卷版+解析版)
- 鋼箱梁吊裝施工專項方案
- 上腔靜脈綜合征護理課件
評論
0/150
提交評論