浙江省臺州市溫嶺市五校聯考2024年中考數學五模試卷含解析_第1頁
浙江省臺州市溫嶺市五校聯考2024年中考數學五模試卷含解析_第2頁
浙江省臺州市溫嶺市五校聯考2024年中考數學五模試卷含解析_第3頁
浙江省臺州市溫嶺市五校聯考2024年中考數學五模試卷含解析_第4頁
浙江省臺州市溫嶺市五校聯考2024年中考數學五模試卷含解析_第5頁
已閱讀5頁,還剩15頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

浙江省臺州市溫嶺市五校聯考2024年中考數學五模試卷注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規定位置.3.請認真核對監考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖,已知是的角平分線,是的垂直平分線,,,則的長為()A.6 B.5 C.4 D.2.小手蓋住的點的坐標可能為()A. B. C. D.3.如果將拋物線向下平移1個單位,那么所得新拋物線的表達式是A. B. C. D.4.在數軸上表示不等式組的解集,正確的是()A. B.C. D.5.港珠澳大橋目前是全世界最長的跨海大橋,其主體工程“海中橋隧”全長35578米,數據35578用科學記數法表示為()A.35.578×103 B.3.5578×104C.3.5578×105 D.0.35578×1056.如圖,△ABC內接于⊙O,BC為直徑,AB=8,AC=6,D是弧AB的中點,CD與AB的交點為E,則CE:DE等于()A.3:1 B.4:1 C.5:2 D.7:27.如圖,在已知的△ABC中,按以下步驟作圖:①分別以B、C為圓心,以大于BC的長為半徑作弧,兩弧相交于點M、N;②作直線MN交AB于點D,連接CD,則下列結論正確的是()A.CD+DB=AB B.CD+AD=AB C.CD+AC=AB D.AD+AC=AB8.半徑為3的圓中,一條弦長為4,則圓心到這條弦的距離是()A.3 B.4 C. D.9.如圖,長度為10m的木條,從兩邊各截取長度為xm的木條,若得到的三根木條能組成三角形,則x可以取的值為()A.2m B.m C.3m D.6m10.《九章算術》中注有“今兩算得失相反,要令正負以名之”,意思是:今有兩數若其意義相反,則分別叫做正數與負數,若氣溫為零上10℃記作+10℃,則﹣3℃表示氣溫為()A.零上3℃ B.零下3℃ C.零上7℃ D.零下7℃二、填空題(共7小題,每小題3分,滿分21分)11.當a<0,b>0時.化簡:=_____.12.圖中圓心角∠AOB=30°,弦CA∥OB,延長CO與圓交于點D,則∠BOD=.13.如圖,在每個小正方形的邊長為1的網格中,點O,A,B,M均在格點上,P為線段OM上的一個動點.(1)OM的長等于_______;(2)當點P在線段OM上運動,且使PA2+PB2取得最小值時,請借助網格和無刻度的直尺,在給定的網格中畫出點P的位置,并簡要說明你是怎么畫的.14.已知菱形的周長為10cm,一條對角線長為6cm,則這個菱形的面積是_____cm1.15.某航空公司規定,乘客所攜帶行李的重量x(kg)與運費y(元)滿足如圖所示的函數圖象,那么每位乘客最多可免費攜帶____kg的行李.16.如圖,將周長為8的△ABC沿BC方向向右平移1個單位得到△DEF,則四邊形ABFD的周長為.17.如圖,在△ABC中,DE∥BC,EF∥AB.若AD=2BD,則的值等于_____三、解答題(共7小題,滿分69分)18.(10分)已知:如圖,∠ABC,射線BC上一點D,求作:等腰△PBD,使線段BD為等腰△PBD的底邊,點P在∠ABC內部,且點P到∠ABC兩邊的距離相等.19.(5分)先化簡,然后從中選出一個合適的整數作為的值代入求值.20.(8分)在△ABC中,,以邊AB上一點O為圓心,OA為半徑的圈與BC相切于點D,分別交AB,AC于點E,F如圖①,連接AD,若,求∠B的大小;如圖②,若點F為的中點,的半徑為2,求AB的長.21.(10分)(1)解方程:=0;(2)解不等式組,并把所得解集表示在數軸上.22.(10分)我省有關部門要求各中小學要把“陽光體育”寫入課表,為了響應這一號召,某校圍繞著“你最喜歡的體育活動項目是什么?(只寫一項)”的問題,對在校學生進行了隨機抽樣調查,從而得到一組數據,如圖1是根據這組數據繪制的條形統計圖,請結合統計圖回答下列問題:該校對多少名學生進行了抽樣調查?本次抽樣調查中,最喜歡足球活動的有多少人?占被調查人數的百分比是多少?若該校九年級共有400名學生,圖2是根據各年級學生人數占全校學生總人數的百分比繪制的扇形統計圖,請你估計全校學生中最喜歡籃球活動的人數約為多少?23.(12分)隨著通訊技術迅猛發展,人與人之間的溝通方式更多樣、便捷.某校數學興趣小組設計了“你最喜歡的溝通方式”調查問卷(每人必選且只選一種),在全校范圍內隨機調查了部分學生,將統計結果繪制了如下兩幅不完整的統計圖,請結合圖中所給的信息解答下列問題:(1)這次統計共抽查了_____名學生,最喜歡用電話溝通的所對應扇形的圓心角是____°;(2)將條形統計圖補充完整;(3)運用這次的調查結果估計1200名學生中最喜歡用QQ進行溝通的學生有多少名?(4)甲、乙兩名同學從微信,QQ,電話三種溝通方式中隨機選了一種方式與對方聯系,請用列表或畫樹狀圖的方法求出甲乙兩名同學恰好選中同一種溝通方式的概率.24.(14分)如圖,已知拋物線經過,兩點,頂點為.(1)求拋物線的解析式;(2)將繞點順時針旋轉后,點落在點的位置,將拋物線沿軸平移后經過點,求平移后所得圖象的函數關系式;(3)設(2)中平移后,所得拋物線與軸的交點為,頂點為,若點在平移后的拋物線上,且滿足的面積是面積的2倍,求點的坐標.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、D【解析】

根據ED是BC的垂直平分線、BD是角平分線以及∠A=90°可求得∠C=∠DBC=∠ABD=30°,從而可得CD=BD=2AD=6,然后利用三角函數的知識進行解答即可得.【詳解】∵ED是BC的垂直平分線,∴DB=DC,∴∠C=∠DBC,∵BD是△ABC的角平分線,∴∠ABD=∠DBC,∵∠A=90°,∴∠C+∠ABD+∠DBC=90°,∴∠C=∠DBC=∠ABD=30°,∴BD=2AD=6,∴CD=6,∴CE=3,故選D.【點睛】本題考查了線段垂直平分線的性質,三角形內角和定理,含30度角的直角三角形的性質,余弦等,結合圖形熟練應用相關的性質及定理是解題的關鍵.2、B【解析】

根據題意,小手蓋住的點在第四象限,結合第四象限點的坐標特點,分析選項可得答案.【詳解】根據圖示,小手蓋住的點在第四象限,第四象限的點坐標特點是:橫正縱負;分析選項可得只有B符合.故選:B.【點睛】此題考查點的坐標,解題的關鍵是記住各象限內點的坐標的符號,進而對號入座,四個象限的符號特點分別是:第一象限(+,+);第二象限(?,+);第三象限(?,?);第四象限(+,?).3、C【解析】

根據向下平移,縱坐標相減,即可得到答案.【詳解】∵拋物線y=x2+2向下平移1個單位,∴拋物線的解析式為y=x2+2-1,即y=x2+1.故選C.4、C【解析】

解不等式組,再將解集在數軸上正確表示出來即可【詳解】解1+x≥0得x≥﹣1,解2x-4<0得x<2,所以不等式的解集為﹣1≤x<2,故選C.【點睛】本題主要考查了一元一次不等式組的求解,求出題中不等式組的解集是解題的關鍵.5、B【解析】

科學計數法是a×,且,n為原數的整數位數減一.【詳解】解:35578=3.5578×,故選B.【點睛】本題主要考查的是利用科學計數法表示較大的數,屬于基礎題型.理解科學計數法的表示方法是解題的關鍵.6、A【解析】

利用垂徑定理的推論得出DO⊥AB,AF=BF,進而得出DF的長和△DEF∽△CEA,再利用相似三角形的性質求出即可.【詳解】連接DO,交AB于點F,∵D是的中點,∴DO⊥AB,AF=BF,∵AB=8,∴AF=BF=4,∴FO是△ABC的中位線,AC∥DO,∵BC為直徑,AB=8,AC=6,∴BC=10,FO=AC=1,∴DO=5,∴DF=5-1=2,∵AC∥DO,∴△DEF∽△CEA,∴,∴==1.故選:A.【點睛】此題主要考查了垂徑定理的推論以及相似三角形的判定與性質,根據已知得出△DEF∽△CEA是解題關鍵.7、B【解析】

作弧后可知MN⊥CB,且CD=DB.【詳解】由題意性質可知MN是BC的垂直平分線,則MN⊥CB,且CD=DB,則CD+AD=AB.【點睛】了解中垂線的作圖規則是解題的關鍵.8、C【解析】如圖所示:過點O作OD⊥AB于點D,∵OB=3,AB=4,OD⊥AB,∴BD=AB=×4=2,在Rt△BOD中,OD=.故選C.9、C【解析】

依據題意,三根木條的長度分別為xm,xm,(10-2x)m,在根據三角形的三邊關系即可判斷.【詳解】解:由題意可知,三根木條的長度分別為xm,xm,(10-2x)m,∵三根木條要組成三角形,∴x-x<10-2x<x+x,解得:.故選擇C.【點睛】本題主要考察了三角形三邊的關系,關鍵是掌握三角形兩邊之和大于第三邊,兩邊之差的絕對值小于第三邊.10、B【解析】試題分析:由題意知,“-”代表零下,因此-3℃表示氣溫為零下3℃.故選B.考點:負數的意義二、填空題(共7小題,每小題3分,滿分21分)11、【解析】分析:按照二次根式的相關運算法則和性質進行計算即可.詳解:∵,∴.故答案為:.點睛:熟記二次根式的以下性質是解答本題的關鍵:(1);(2)=.12、30°【解析】試題分析:∵CA∥OB,∠AOB=30°,∴∠CAO=∠AOB=30°.∵OA=OC,∴∠C=∠OAC=30°.∵∠C和∠AOD是同弧所對的圓周角和圓心角,∴∠AOD=2∠C=60°.∴∠BOD=60°-30°=30°.13、(1)4;(2)見解析;【解析】

解:(1)由勾股定理可得OM的長度(2)取格點F,E,連接EF,得到點N,取格點S,T,連接ST,得到點R,連接NR交OM于P,則點P即為所求。【詳解】(1)OM==4;故答案為4.(2)以點O為原點建立直角坐標系,則A(1,0),B(4,0),設P(a,a),(0≤a≤4),∵PA2=(a﹣1)2+a2,PB2=(a﹣4)2+a2,∴PA2+PB2=4(a﹣)2+,∵0≤a≤4,∴當a=時,PA2+PB2取得最小值,綜上,需作出點P滿足線段OP的長=;取格點F,E,連接EF,得到點N,取格點S,T,連接ST,得到點R,連接NR交OM于P,則點P即為所求.【點睛】(1)根據勾股定理即可得到結論;(2)取格點F,E,連接EF,得到點N,取格點S,T,連接ST,得到點R,連接NR即可得到結果.14、14【解析】

根據菱形的性質,先求另一條對角線的長度,再運用菱形的面積等于對角線乘積的一半求解.【詳解】解:如圖,在菱形ABCD中,BD=2.∵菱形的周長為10,BD=2,∴AB=5,BO=3,∴AC=3.∴面積故答案為14.【點睛】此題考查了菱形的性質及面積求法,難度不大.15、2【解析】

設乘客所攜帶行李的重量x(kg)與運費y(元)之間的函數關系式為y=kx+b,由待定系數法求出其解即可.【詳解】解:設乘客所攜帶行李的重量x(kg)與運費y(元)之間的函數關系式為y=kx+b,由題意,得,解得,,則y=30x-1.

當y=0時,

30x-1=0,

解得:x=2.

故答案為:2.【點睛】本題考查了運用待定系數法求一次函數的解析式的運用,由函數值求自變量的值的運用,解答時求出函數的解析式是關鍵.16、1.【解析】試題解析:根據題意,將周長為8的△ABC沿邊BC向右平移1個單位得到△DEF,則AD=1,BF=BC+CF=BC+1,DF=AC,又∵AB+BC+AC=1,∴四邊形ABFD的周長=AD+AB+BF+DF=1+AB+BC+1+AC=1.考點:平移的性質.17、【解析】

根據平行線分線段成比例定理解答即可.【詳解】解:∵DE∥BC,AD=2BD,∴,∵EF∥AB,∴,故答案為.【點睛】本題考查了平行線分線段成比例:三條平行線截兩條直線,所得的對應線段成比例.三、解答題(共7小題,滿分69分)18、見解析.【解析】

根據角平分線的性質、線段的垂直平分線的性質即可解決問題.【詳解】∵點P在∠ABC的平分線上,∴點P到∠ABC兩邊的距離相等(角平分線上的點到角的兩邊距離相等),∵點P在線段BD的垂直平分線上,∴PB=PD(線段的垂直平分線上的點到線段的兩個端點的距離相等),如圖所示:【點睛】本題考查作圖﹣復雜作圖、角平分線的性質、線段的垂直平分線的性質等知識,解題的關鍵是靈活運用所學知識解決問題.19、-1【解析】

先化簡,再選出一個合適的整數代入即可,要注意a的取值范圍.【詳解】解:,當時,原式.【點睛】本題考查的是代數式的求值,熟練掌握代數式的化簡是解題的關鍵.20、(1)∠B=40°;(2)AB=6.【解析】

(1)連接OD,由在△ABC中,∠C=90°,BC是切線,易得AC∥OD

,即可求得∠CAD=∠ADO

,繼而求得答案;

(2)首先連接OF,OD,由AC∥OD得∠OFA=∠FOD

,由點F為弧AD的中點,易得△AOF是等邊三角形,繼而求得答案.【詳解】解:(1)如解圖①,連接OD,∵BC切⊙O于點D,∴∠ODB=90°,∵∠C=90°,∴AC∥OD,∴∠CAD=∠ADO,∵OA=OD,∴∠DAO=∠ADO=∠CAD=25°,∴∠DOB=∠CAO=∠CAD+∠DAO=50°,∵∠ODB=90°,∴∠B=90°-∠DOB=90°-50°=40°;(2)如解圖②,連接OF,OD,∵AC∥OD,∴∠OFA=∠FOD,∵點F為弧AD的中點,∴∠AOF=∠FOD,∴∠OFA=∠AOF,∴AF=OA,∵OA=OF,∴△AOF為等邊三角形,∴∠FAO=60°,則∠DOB=60°,∴∠B=30°,∵在Rt△ODB中,OD=2,∴OB=4,∴AB=AO+OB=2+4=6.【點睛】本題考查了切線的性質,平行線的性質,等腰三角形的性質,弧弦圓心角的關系,等邊三角形的判定與性質,含30°角的直角三角形的性質.熟練掌握切線的性質是解(1)的關鍵,證明△AOF為等邊三角形是解(2)的關鍵.21、(1)x=;(2)x>3;數軸見解析;【解析】

(1)先把分式方程轉化成整式方程,求出方程的解,再進行檢驗即可;(2)先求出每個不等式的解集,再求出不等式組的解集即可.【詳解】解:(1)方程兩邊都乘以(1﹣2x)(x+2)得:x+2﹣(1﹣2x)=0,解得:檢驗:當時,(1﹣2x)(x+2)≠0,所以是原方程的解,所以原方程的解是;(2),∵解不等式①得:x>1,解不等式②得:x>3,∴不等式組的解集為x>3,在數軸上表示為:.【點睛】本題考查了解分式方程和解一元一次不等式組、在數軸上表示不等式組的解集等知識點,能把分式方程轉化成整式方程是解(1)的關鍵,能根據不等式的解集得出不等式組的解集是解(2)的關鍵.22、(1)該校對50名學生進行了抽樣調查;(2)最喜歡足球活動的人占被調查人數的20%;(3)全校學生中最喜歡籃球活動的人數約為720人.【解析】

(1)根據條形統計圖,求個部分數量的和即可;(2)根據部分除以總體求得百分比;(3)根據扇形統計圖中各部分占總體的百分比之和為1,求出百分比即可求解.【詳解】(1)4+8+10+18+10=50(名)答:該校對50名學生進行了抽樣調查.(2)最喜歡足球活動的有10人,,∴最喜歡足球活動的人占被調查人數的20%.(3)全校學生人數:400÷(1﹣30%﹣24%﹣26%)=400÷20%=2000(人)則全校學生中最喜歡籃球活動的人數約為2000×=720(人).【點睛】此題主要考查了條形統計圖和扇形統計圖的綜合運用,讀懂統計圖,從不同的統計圖中得到必要的信息是解決問題的關鍵.條形統計圖能清楚的表示出每個項目的數據;扇形統計圖中各部分占總體的百分比之和為1,直接反應部分占全體的百分比的大小.23、(1)120,54;(2)補圖見解析;(3)660名;(4).【解析】

(1)用喜歡使用微信的人數除以它所占的百分比得到調查的總人數,再用360°乘以樣本中電話人數所占比例;(2)先計算出喜歡使用短信的人數,然后補全條形統計圖;(3)利用樣本估計總體,用1200乘以樣本中最喜歡用QQ進行溝通的學生所占的百分比即可;(4)畫樹狀圖展示所有9種等可能的結果數,再找出甲乙兩名同學恰好選中同一種溝通方式的結果數,然后根據概率公式求解.【詳解】解:(1)這次統計共抽查學生24÷20%=120(人),其中最喜歡用電話溝通的所對應扇形的圓心角是360°×=54°,故答案為120、54;

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論