2024屆吉林省遼源市重點名校中考數學考前最后一卷含解析_第1頁
2024屆吉林省遼源市重點名校中考數學考前最后一卷含解析_第2頁
2024屆吉林省遼源市重點名校中考數學考前最后一卷含解析_第3頁
2024屆吉林省遼源市重點名校中考數學考前最后一卷含解析_第4頁
2024屆吉林省遼源市重點名校中考數學考前最后一卷含解析_第5頁
已閱讀5頁,還剩19頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2024屆吉林省遼源市重點名校中考數學考前最后一卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.已知正方形MNOK和正六邊形ABCDEF邊長均為1,把正方形放在正六邊形外,使OK邊與AB邊重合,如圖所示,按下列步驟操作:將正方形在正六邊形外繞點B逆時針旋轉,使ON邊與BC邊重合,完成第一次旋轉;再繞點C逆時針旋轉,使MN邊與CD邊重合,完成第二次旋轉;……在這樣連續6次旋轉的過程中,點B,O間的距離不可能是()A.0 B.0.8 C.2.5 D.3.42.甲、乙兩人在直線跑道上同起點、同終點、同方向勻速跑步500m,先到終點的人原地休息.已知甲先出發2s.在跑步過程中,甲、乙兩人的距離y(m)與乙出發的時間t(s)之間的關系如圖所示,給出以下結論:①a=8;②b=92;③c=1.其中正確的是()A.①②③ B.僅有①② C.僅有①③ D.僅有②③3.蘋果的單價為a元/千克,香蕉的單價為b元/千克,買2千克蘋果和3千克香蕉共需()A.(a+b)元 B.(3a+2b)元 C.(2a+3b)元 D.5(a+b)元4.A、B兩地相距180km,新修的高速公路開通后,在A、B兩地間行駛的長途客車平均車速提高了50%,而從A地到B地的時間縮短了1h.若設原來的平均車速為xkm/h,則根據題意可列方程為A. B.C. D.5.如圖,Rt△ABC中,∠C=90°,AC=4,BC=4,兩等圓⊙A,⊙B外切,那么圖中兩個扇形(即陰影部分)的面積之和為()A.2π B.4π C.6π D.8π6.如圖中任意畫一個點,落在黑色區域的概率是()A. B. C.π D.507.已知⊙O的半徑為13,弦AB∥CD,AB=24,CD=10,則四邊形ACDB的面積是()A.119 B.289 C.77或119 D.119或2898.若a與5互為倒數,則a=()A. B.5 C.-5 D.9.如圖,某廠生產一種扇形折扇,OB=10cm,AB=20cm,其中裱花的部分是用紙糊的,若扇子完全打開攤平時紙面面積為πcm2,則扇形圓心角的度數為()A.120° B.140° C.150° D.160°10.如圖,雙曲線y=(k>0)經過矩形OABC的邊BC的中點E,交AB于點D,若四邊形ODBC的面積為3,則k的值為()A.1 B.2 C.3 D.611.下列說法中,正確的是()A.長度相等的弧是等弧B.平分弦的直徑垂直于弦,并且平分弦所對的兩條弧C.經過半徑并且垂直于這條半徑的直線是圓的切線D.在同圓或等圓中90°的圓周角所對的弦是這個圓的直徑12.已知關于x的一元二次方程x2+mx+n=0的兩個實數根分別為x1=2,x2=4,則m+n的值是()A.﹣10 B.10 C.﹣6 D.2二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如果,那么的結果是______.14.如圖,是用火柴棒拼成的圖形,則第n個圖形需_____根火柴棒.15.有五張背面完全相同的卡片,其正面分別畫有等腰三角形、平行四邊形、矩形、正方形、菱形,將這五張卡片背面朝上洗勻,從中隨機抽取一張,卡片上的圖形是中心對稱圖形的概率是_____.16.如圖,半圓O的直徑AB=7,兩弦AC、BD相交于點E,弦CD=,且BD=5,則DE=_____.17.已知反比例函數y=在第二象限內的圖象如圖,經過圖象上兩點A、E分別引y軸與x軸的垂線,交于點C,且與y軸與x軸分別交于點M、B.連接OC交反比例函數圖象于點D,且,連接OA,OE,如果△AOC的面積是15,則△ADC與△BOE的面積和為_____.18.四邊形ABCD中,向量_____________.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)一個不透明的口袋里裝有分別標有漢字“美”、“麗”、“光”、“明”的四個小球,除漢字不同之外,小球沒有任何區別,每次摸球前先攪拌均勻再摸球.若從中任取一個球,求摸出球上的漢字剛好是“美”的概率;甲從中任取一球,不放回,再從中任取一球,請用樹狀圖或列表法,求甲取出的兩個球上的漢字恰能組成“美麗”或“光明”的概率.20.(6分)目前“微信”、“支付寶”、“共享單車”和“網購”給我們的生活帶來了很多便利,初二數學小組在校內對“你最認可的四大新生事物”進行調查,隨機調查了人(每名學生必選一種且只能從這四種中選擇一種)并將調查結果繪制成如下不完整的統計圖.根據圖中信息求出,;請你幫助他們將這兩個統計圖補全;根據抽樣調查的結果,請估算全校2000名學生中,大約有多少人最認可“微信”這一新生事物?21.(6分)已知是關于的方程的一個根,則__22.(8分)某商場以每件30元的價格購進一種商品,試銷中發現這種商品每天的銷售量m(件)與每件的銷售價x(元)滿足一次函數關系m=162﹣3x.請寫出商場賣這種商品每天的銷售利潤y(元)與每件銷售價x(元)之間的函數關系式.商場每天銷售這種商品的銷售利潤能否達到500元?如果能,求出此時的銷售價格;如果不能,說明理由.23.(8分)某品牌牛奶供應商提供A,B,C,D四種不同口味的牛奶供學生飲用.某校為了了解學生對不同口味的牛奶的喜好,對全校訂牛奶的學生進行了隨機調查,并根據調查結果繪制了如下兩幅不完整的統計圖.根據統計圖的信息解決下列問題:(1)本次調查的學生有多少人?(2)補全上面的條形統計圖;(3)扇形統計圖中C對應的中心角度數是;(4)若該校有600名學生訂了該品牌的牛奶,每名學生每天只訂一盒牛奶,要使學生能喝到自己喜歡的牛奶,則該牛奶供應商送往該校的牛奶中,A,B口味的牛奶共約多少盒?24.(10分)如圖,四邊形ABCD的四個頂點分別在反比例函數y=mx與y=n(1)當m=1,n=20時.①若點P的縱坐標為2,求直線AB的函數表達式.②若點P是BD的中點,試判斷四邊形ABCD的形狀,并說明理由.(2)四邊形ABCD能否成為正方形?若能,求此時m,n之間的數量關系;若不能,試說明理由.25.(10分)在平面直角坐標系中,△ABC的三個頂點坐標分別為A(2,﹣4),B(3,﹣2),C(6,﹣3).畫出△ABC關于軸對稱的△A1B1C1;以M點為位似中心,在網格中畫出△A1B1C1的位似圖形△A2B2C2,使△A2B2C2與△A1B1C1的相似比為2:1.26.(12分)某校學生會準備調查六年級學生參加“武術類”、“書畫類”、“棋牌類”、“器樂類”四類校本課程的人數.(1)確定調查方式時,甲同學說:“我到六年級(1)班去調查全體同學”;乙同學說:“放學時我到校門口隨機調查部分同學”;丙同學說:“我到六年級每個班隨機調查一定數量的同學”.請指出哪位同學的調查方式最合理.類別頻數(人數)頻率武術類0.25書畫類200.20棋牌類15b器樂類合計a1.00(2)他們采用了最為合理的調查方法收集數據,并繪制了如圖所示的統計表和扇形統計圖.請你根據以上圖表提供的信息解答下列問題:①a=_____,b=_____;②在扇形統計圖中,器樂類所對應扇形的圓心角的度數是_____;③若該校六年級有學生560人,請你估計大約有多少學生參加武術類校本課程.27.(12分)第二十四屆冬季奧林匹克運動會將于2022年2月4日至2月20日在北京舉行,北京將成為歷史上第一座既舉辦過夏奧會又舉辦過冬奧會的城市.某區舉辦了一次冬奧知識網上答題競賽,甲、乙兩校各有名學生參加活動,為了解這兩所學校的成績情況,進行了抽樣調查,過程如下,請補充完整.[收集數據]從甲、乙兩校各隨機抽取名學生,在這次競賽中他們的成績如下:甲:乙:[整理、描述數據]按如下分數段整理、描述這兩組樣本數據:學校人數成績甲乙(說明:優秀成績為,良好成績為合格成績為.)[分析數據]兩組樣本數據的平均分、中位數、眾數如下表所示:學校平均分中位數眾數甲乙其中.[得出結論](1)小明同學說:“這次競賽我得了分,在我們學校排名屬中游略偏上!”由表中數據可知小明是_校的學生;(填“甲”或“乙”)(2)張老師從乙校隨機抽取--名學生的競賽成績,試估計這名學生的競賽成績為優秀的概率為_;(3)根據以上數據推斷一所你認為競賽成績較好的學校,并說明理由:;(至少從兩個不同的角度說明推斷的合理性)

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、D【解析】

如圖,點O的運動軌跡是圖在黃線,點B,O間的距離d的最小值為0,最大值為線段BK=,可得0≤d≤,即0≤d≤3.1,由此即可判斷;【詳解】如圖,點O的運動軌跡是圖在黃線,作CH⊥BD于點H,∵六邊形ABCDE是正六邊形,∴∠BCD=120o,∴∠CBH=30o,∴BH=cos30o·BC=,∴BD=.∵DK=,∴BK=,點B,O間的距離d的最小值為0,最大值為線段BK=,∴0≤d≤,即0≤d≤3.1,故點B,O間的距離不可能是3.4,故選:D.【點睛】本題考查正多邊形與圓、旋轉變換等知識,解題的關鍵是正確作出點O的運動軌跡,求出點B,O間的距離的最小值以及最大值是解答本題的關鍵.2、A【解析】

解:∵乙出發時甲行了2秒,相距8m,∴甲的速度為8/2=4m/s.∵100秒時乙開始休息.∴乙的速度是500/100=5m/s.∵a秒后甲乙相遇,∴a=8/(5-4)=8秒.因此①正確.∵100秒時乙到達終點,甲走了4×(100+2)=408m,∴b=500-408=92m.因此②正確.∵甲走到終點一共需耗時500/4=125s,,∴c=125-2=1s.因此③正確.終上所述,①②③結論皆正確.故選A.3、C【解析】

用單價乘數量得出買2千克蘋果和3千克香蕉的總價,再進一步相加即可.【詳解】買單價為a元的蘋果2千克用去2a元,買單價為b元的香蕉3千克用去3b元,共用去:(2a+3b)元.故選C.【點睛】本題主要考查列代數式,總價=單價乘數量.4、A【解析】

直接利用在A,B兩地間行駛的長途客車平均車速提高了50%,而從A地到B地的時間縮短了1h,利用時間差值得出等式即可.【詳解】解:設原來的平均車速為xkm/h,則根據題意可列方程為:﹣=1.故選A.【點睛】本題主要考查了由實際問題抽象出分式方程,根據題意得出正確等量關系是解題的關鍵.5、B【解析】

先依據勾股定理求得AB的長,從而可求得兩圓的半徑為4,然后由∠A+∠B=90°可知陰影部分的面積等于一個圓的面積的.【詳解】在△ABC中,依據勾股定理可知AB==8,∵兩等圓⊙A,⊙B外切,∴兩圓的半徑均為4,∵∠A+∠B=90°,∴陰影部分的面積==4π.故選:B.【點睛】本題主要考查的是相切兩圓的性質、勾股定理的應用、扇形面積的計算,求得兩個扇形的半徑和圓心角之和是解題的關鍵.6、B【解析】

抓住黑白面積相等,根據概率公式可求出概率.【詳解】因為,黑白區域面積相等,所以,點落在黑色區域的概率是.故選B【點睛】本題考核知識點:幾何概率.解題關鍵點:分清黑白區域面積關系.7、D【解析】

分兩種情況進行討論:①弦AB和CD在圓心同側;②弦AB和CD在圓心異側;作出半徑和弦心距,利用勾股定理和垂徑定理,然后按梯形面積的求解即可.【詳解】解:①當弦AB和CD在圓心同側時,如圖1,∵AB=24cm,CD=10cm,∴AE=12cm,CF=5cm,∴OA=OC=13cm,∴EO=5cm,OF=12cm,∴EF=12-5=7cm;∴四邊形ACDB的面積②當弦AB和CD在圓心異側時,如圖2,∵AB=24cm,CD=10cm,∴.AE=12cm,CF=5cm,∵OA=OC=13cm,∴EO=5cm,OF=12cm,∴EF=OF+OE=17cm.∴四邊形ACDB的面積∴四邊形ACDB的面積為119或289.故選:D.【點睛】本題考查了勾股定理和垂徑定理的應用.此題難度適中,解題的關鍵是注意掌握數形結合思想與分類討論思想的應用,小心別漏解.8、A【解析】分析:當兩數的積為1時,則這兩個數互為倒數,根據定義即可得出答案.詳解:根據題意可得:5a=1,解得:a=,故選A.點睛:本題主要考查的是倒數的定義,屬于基礎題型.理解倒數的定義是解題的關鍵.9、C【解析】

根據扇形的面積公式列方程即可得到結論.【詳解】∵OB=10cm,AB=20cm,∴OA=OB+AB=30cm,設扇形圓心角的度數為α,∵紙面面積為πcm2,∴,∴α=150°,故選:C.【點睛】本題考了扇形面積的計算的應用,解題的關鍵是熟練掌握扇形面積計算公式:扇形的面積=.10、B【解析】

先根據矩形的特點設出B、C的坐標,根據矩形的面積求出B點橫縱坐標的積,由D為AB的中點求出D點的橫縱坐標,再由待定系數法即可求出反比例函數的解析式.【詳解】解:如圖:連接OE,設此反比例函數的解析式為y=(k>0),C(c,0),則B(c,b),E(c,),設D(x,y),∵D和E都在反比例函數圖象上,∴xy=k,即,∵四邊形ODBC的面積為3,∴∴∴bc=4∴∵k>0∴解得k=2,故答案為:B.【點睛】本題考查了反比例函數中比例系數k的幾何意義,涉及到矩形的性質及用待定系數法求反比例函數的解析式,難度適中.11、D【解析】

根據切線的判定,圓的知識,可得答案.【詳解】解:A、在等圓或同圓中,長度相等的弧是等弧,故A錯誤;B、平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧,故B錯誤;C、經過半徑的外端并且垂直于這條半徑的直線是圓的切線,故C錯誤;D、在同圓或等圓中90°的圓周角所對的弦是這個圓的直徑,故D正確;故選:D.【點睛】本題考查了切線的判定及圓的知識,利用圓的知識及切線的判定是解題關鍵.12、D【解析】

根據“一元二次方程x2+mx+n=0的兩個實數根分別為x1=2,x2=4”,結合根與系數的關系,分別列出關于m和n的一元一次不等式,求出m和n的值,代入m+n即可得到答案.【詳解】解:根據題意得:x1+x2=﹣m=2+4,解得:m=﹣6,x1?x2=n=2×4,解得:n=8,m+n=﹣6+8=2,故選D.【點睛】本題考查了根與系數的關系,正確掌握根與系數的關系是解決問題的關鍵.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、1【解析】

令k,則a=2k,b=3k,代入到原式化簡的結果計算即可.【詳解】令k,則a=2k,b=3k,∴原式=1.故答案為:1.【點睛】本題考查了約分,解題的關鍵是掌握約分的定義:約去分式的分子與分母的公因式,不改變分式的值,這樣的分式變形叫做分式的約分.14、2n+1.【解析】

解:根據圖形可得出:當三角形的個數為1時,火柴棒的根數為3;當三角形的個數為2時,火柴棒的根數為5;當三角形的個數為3時,火柴棒的根數為7;當三角形的個數為4時,火柴棒的根數為9;……由此可以看出:當三角形的個數為n時,火柴棒的根數為3+2(n﹣1)=2n+1.故答案為:2n+1.15、【解析】分析:直接利用中心對稱圖形的性質結合概率求法直接得出答案.詳解:∵等腰三角形、平行四邊形、矩形、正方形、菱形中,平行四邊形、矩形、正方形、菱形都是中心對稱圖形,∴從中隨機抽取一張,卡片上的圖形是中心對稱圖形的概率是:.故答案為.點睛:此題主要考查了中心對稱圖形的性質和概率求法,正確把握中心對稱圖形的定義是解題關鍵.16、.【解析】

連接OD,OC,AD,由⊙O的直徑AB=7可得出OD=OC,故可得出OD=CD=OC,所以∠DOC=60°,∠DAC=30°,根據勾股定理可求出AD的長,在Rt△ADE中,利用∠DAC的正切值求解即可.【詳解】解:連接OD,OC,AD,∵半圓O的直徑AB=7,∴OD=OC=,∵CD=,∴OD=CD=OC∴∠DOC=60°,∠DAC=30°又∵AB=7,BD=5,∴在Rt△ADE中,∵∠DAC=30°,∴DE=AD?tan30°故答案為【點睛】本題考查了圓周角定理、等邊三角形的判定與性質,勾股定理的應用等知識;綜合性比較強.17、1.【解析】連結AD,過D點作DG∥CM,∵,△AOC的面積是15,∴CD:CO=1:3,OG:OM=2:3,∴△ACD的面積是5,△ODF的面積是15×=,∴四邊形AMGF的面積=,∴△BOE的面積=△AOM的面積=×=12,∴△ADC與△BOE的面積和為5+12=1,故答案為:1.18、【解析】分析:根據“向量運算”的三角形法則進行計算即可.詳解:如下圖所示,由向量運算的三角形法則可得:==.故答案為.點睛:理解向量運算的三角形法則是正確解答本題的關鍵.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1);(2).【解析】

(1)一共4個小球,則任取一個球,共有4種不同結果,摸出球上的漢字剛好是“美”的概率為;(2)列表或畫出樹狀圖,根據一共出現的等可能的情況及恰能組成“美麗”或“光明”的情況進行解答即可.【詳解】(1)∵“美”、“麗”、“光”、“明”的四個小球,任取一球,共有4種不同結果,∴任取一個球,摸出球上的漢字剛好是“美”的概率P=(2)列表如下:美麗光明美----(美,麗)(光,美)(美,明)麗(美,麗)----(光,麗)(明,麗)光(美,光)(光,麗)----(光,明)明(美,明)(明,麗)(光,明)-------根據表格可得:共有12中等可能的結果,其中恰能組成“美麗”或“光明”共有4種,故取出的兩個球上的漢字恰能組成“美麗”或“光明”的概率.【點睛】此題考查的是用列表法或樹狀圖法求概率與不等式的性質.注意樹狀圖法與列表法可以不重復不遺漏的列出所有可能的結果,列表法適合于兩步完成的事件;樹狀圖法適合兩步或兩步以上完成的事件;注意概率=所求情況數與總情況數之比.20、(1)100,35;(2)補全圖形,如圖;(3)800人【解析】

(1)由共享單車人數及其百分比求得總人數m,用支付寶人數除以總人數可得百分比n的值;(2)總人數乘以網購人數的百分比可得其人數,用微信人數除以總人數求得百分比即可補全兩個圖形;(3)總人數乘以樣本中微信人數所占的百分比可得答案.【詳解】解:(1)∵被調查總人數為m=10÷10%=100人,∴用支付寶人數所占百分比n%=,∴m=100,n=35.(2)網購人數為100×15%=15人,微信人數所占百分比為,補全圖形如圖:(3)估算全校2000名學生中,最認可“微信”這一新生事物的人數為2000×40%=800人.【點睛】本題考查條形統計圖和扇形統計圖的信息關聯問題,樣本估計總體問題,從不同的統計圖得到必要的信息是解決問題的關鍵.21、10【解析】

利用一元二次方程的解的定義得到,再把變形為,然后利用整體代入的方法計算.【詳解】解:是關于的方程的一個根,,,.故答案為10.【點睛】本題考查了一元二次方程的解:能使一元二次方程左右兩邊相等的未知數的值是一元二次方程的解.22、(1)y=﹣3x2+252x﹣1(2≤x≤54);(2)商場每天銷售這種商品的銷售利潤不能達到500元.【解析】

(1)此題可以按等量關系“每天的銷售利潤=(銷售價﹣進價)×每天的銷售量”列出函數關系式,并由售價大于進價,且銷售量大于零求得自變量的取值范圍.(2)根據(1)所得的函數關系式,利用配方法求二次函數的最值即可得出答案.【詳解】(1)由題意得:每件商品的銷售利潤為(x﹣2)元,那么m件的銷售利潤為y=m(x﹣2).又∵m=162﹣3x,∴y=(x﹣2)(162﹣3x),即y=﹣3x2+252x﹣1.∵x﹣2≥0,∴x≥2.又∵m≥0,∴162﹣3x≥0,即x≤54,∴2≤x≤54,∴所求關系式為y=﹣3x2+252x﹣1(2≤x≤54).(2)由(1)得y=﹣3x2+252x﹣1=﹣3(x﹣42)2+432,所以可得售價定為42元時獲得的利潤最大,最大銷售利潤是432元.∵500>432,∴商場每天銷售這種商品的銷售利潤不能達到500元.【點睛】本題考查了二次函數在實際生活中的應用,解答本題的關鍵是根據等量關系:“每天的銷售利潤=(銷售價﹣進價)×每天的銷售量”列出函數關系式,另外要熟練掌握二次函數求最值的方法.23、(1)150人;(2)補圖見解析;(3)144°;(4)300盒.【解析】

(1)根據喜好A口味的牛奶的學生人數和所占百分比,即可求出本次調查的學生數.(2)用調查總人數減去A、B、D三種喜好不同口味牛奶的人數,求出喜好C口味牛奶的人數,補全統計圖.再用360°乘以喜好C口味的牛奶人數所占百分比求出對應中心角度數.(3)用總人數乘以A、B口味牛奶喜歡人數所占的百分比得出答案.【詳解】解:(1)本次調查的學生有30÷20%=150人;(2)C類別人數為150﹣(30+45+15)=60人,補全條形圖如下:(3)扇形統計圖中C對應的中心角度數是360°×=144°故答案為144°(4)600×()=300(人),答:該牛奶供應商送往該校的牛奶中,A,B口味的牛奶共約300盒.【點睛】本題考查了條形統計圖和扇形統計圖的綜合運用,讀懂統計圖,從不同的統計圖中得出必要的信息是解題的關鍵.24、(1)①直線AB的解析式為y=﹣12【解析】分析:(1)①先確定出點A,B坐標,再利用待定系數法即可得出結論;②先確定出點D坐標,進而確定出點P坐標,進而求出PA,PC,即可得出結論;(2)先確定出B(1,m4),進而得出A(1-t,m4+t),即:(1-t)(m4詳解:(1)①如圖1,∵m=1,∴反比例函數為y=4x∴B(1,1),當y=2時,∴2=4x∴x=2,∴A(2,2),設直線AB的解析式為y=kx+b,∴2k+b=∴k=∴直線AB的解析式為y=-12②四邊形ABCD是菱形,理由如下:如圖2,由①知,B(1,1),∵BD∥y軸,∴D(1,5),∵點P是線段BD的中點,∴P(1,3),當y=3時,由y=4x得,x=4由y=20x得,x=20∴PA=1-43=83,PC=203∴PA=PC,∵PB=PD,∴四邊形ABCD為平行四邊形,∵BD⊥AC,∴四邊形ABCD是菱形;(2)四邊形ABCD能是正方形,理由:當四邊形ABCD是正方形,∴PA=PB=PC=PD,(設為t,t≠0),當x=1時,y=mx=m∴B(1,m4∴A(1-t,m4∴(1-t)(m4∴t=1-m4∴點D的縱坐標為m4+2t=m4+2(1-m4∴D(1,8-m4∴1(8-m4∴m+n=2.點睛:此題是反比例函數綜合題,主要考查了待定系數法,平行四邊形的判定,菱形的判定和性質,正方形的性質,判斷出四邊形ABCD是平行四邊

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論