




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2024屆江蘇省南通市如皋中學高三第四次模擬考試數學試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知的展開式中第項與第項的二項式系數相等,則奇數項的二項式系數和為().A. B. C. D.2.2020年是脫貧攻堅決戰決勝之年,某市為早日實現目標,現將甲、乙、丙、丁4名干部派遺到、、三個貧困縣扶貧,要求每個貧困縣至少分到一人,則甲被派遣到縣的分法有()A.6種 B.12種 C.24種 D.36種3.已知x,y滿足不等式,且目標函數z=9x+6y最大值的變化范圍[20,22],則t的取值范圍()A.[2,4] B.[4,6] C.[5,8] D.[6,7]4.中,點在邊上,平分,若,,,,則()A. B. C. D.5.為了研究國民收入在國民之間的分配,避免貧富過分懸殊,美國統計學家勞倫茨提出了著名的勞倫茨曲線,如圖所示.勞倫茨曲線為直線時,表示收入完全平等.勞倫茨曲線為折線時,表示收入完全不平等.記區域為不平等區域,表示其面積,為的面積,將稱為基尼系數.對于下列說法:①越小,則國民分配越公平;②設勞倫茨曲線對應的函數為,則對,均有;③若某國家某年的勞倫茨曲線近似為,則;④若某國家某年的勞倫茨曲線近似為,則.其中正確的是:A.①④ B.②③ C.①③④ D.①②④6.為了加強“精準扶貧”,實現偉大復興的“中國夢”,某大學派遣甲、乙、丙、丁、戊五位同學參加三個貧困縣的調研工作,每個縣至少去1人,且甲、乙兩人約定去同一個貧困縣,則不同的派遣方案共有()A.24 B.36 C.48 D.647.若,則的虛部是()A. B. C. D.8.已知函數的圖象的一條對稱軸為,將函數的圖象向右平行移動個單位長度后得到函數圖象,則函數的解析式為()A. B.C. D.9.已知,,,若,則()A. B. C. D.10.設a,b∈(0,1)∪(1,+∞),則"a=b"是"logA.充分不必要條件 B.必要不充分條件 C.充要條件 D.既不充分也不必要條件11.若不等式對恒成立,則實數的取值范圍是()A. B. C. D.12.已知拋物線和點,直線與拋物線交于不同兩點,,直線與拋物線交于另一點.給出以下判斷:①以為直徑的圓與拋物線準線相離;②直線與直線的斜率乘積為;③設過點,,的圓的圓心坐標為,半徑為,則.其中,所有正確判斷的序號是()A.①② B.①③ C.②③ D.①②③二、填空題:本題共4小題,每小題5分,共20分。13.已知雙曲線的右準線與漸近線的交點在拋物線上,則實數的值為___________.14.已知二面角α﹣l﹣β為60°,在其內部取點A,在半平面α,β內分別取點B,C.若點A到棱l的距離為1,則△ABC的周長的最小值為_____.15.如圖,在梯形中,∥,分別是的中點,若,則的值為___________.16.的展開式中所有項的系數和為______,常數項為______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數的圖象在處的切線方程是.(1)求的值;(2)若函數,討論的單調性與極值;(3)證明:.18.(12分)某藝術品公司欲生產一款迎新春工藝禮品,該禮品是由玻璃球面和該球的內接圓錐組成,圓錐的側面用于藝術裝飾,如圖1.為了便于設計,可將該禮品看成是由圓及其內接等腰三角形繞底邊上的高所在直線旋轉180°而成,如圖2.已知圓的半徑為,設,圓錐的側面積為.(1)求關于的函數關系式;(2)為了達到最佳觀賞效果,要求圓錐的側面積最大.求取得最大值時腰的長度.19.(12分)已知函數,當時,有極大值3;(1)求,的值;(2)求函數的極小值及單調區間.20.(12分)如圖,三棱柱中,側面為菱形,.(1)求證:平面;(2)若,求二面角的余弦值.21.(12分)已知函數,其中,.(1)當時,求的值;(2)當的最小正周期為時,求在上的值域.22.(10分)已知函數.(1)討論的單調性;(2)若在定義域內是增函數,且存在不相等的正實數,使得,證明:.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】因為的展開式中第4項與第8項的二項式系數相等,所以,解得,所以二項式中奇數項的二項式系數和為.考點:二項式系數,二項式系數和.2、B【解析】
分成甲單獨到縣和甲與另一人一同到縣兩種情況進行分類討論,由此求得甲被派遣到縣的分法數.【詳解】如果甲單獨到縣,則方法數有種.如果甲與另一人一同到縣,則方法數有種.故總的方法數有種.故選:B【點睛】本小題主要考查簡答排列組合的計算,屬于基礎題.3、B【解析】
作出可行域,對t進行分類討論分析目標函數的最大值,即可求解.【詳解】畫出不等式組所表示的可行域如圖△AOB當t≤2時,可行域即為如圖中的△OAM,此時目標函數z=9x+6y在A(2,0)取得最大值Z=18不符合題意t>2時可知目標函數Z=9x+6y在的交點()處取得最大值,此時Z=t+16由題意可得,20≤t+16≤22解可得4≤t≤6故選:B.【點睛】此題考查線性規劃,根據可行域結合目標函數的最大值的取值范圍求參數的取值范圍,涉及分類討論思想,關鍵在于熟練掌握截距型目標函數的最大值最優解的處理辦法.4、B【解析】
由平分,根據三角形內角平分線定理可得,再根據平面向量的加減法運算即得答案.【詳解】平分,根據三角形內角平分線定理可得,又,,,,..故選:.【點睛】本題主要考查平面向量的線性運算,屬于基礎題.5、A【解析】
對于①,根據基尼系數公式,可得基尼系數越小,不平等區域的面積越小,國民分配越公平,所以①正確.對于②,根據勞倫茨曲線為一條凹向橫軸的曲線,由圖得,均有,可得,所以②錯誤.對于③,因為,所以,所以③錯誤.對于④,因為,所以,所以④正確.故選A.6、B【解析】
根據題意,有兩種分配方案,一是,二是,然后各自全排列,再求和.【詳解】當按照進行分配時,則有種不同的方案;當按照進行分配,則有種不同的方案.故共有36種不同的派遣方案,故選:B.【點睛】本題考查排列組合、數學文化,還考查數學建模能力以及分類討論思想,屬于中檔題.7、D【解析】
通過復數的乘除運算法則化簡求解復數為:的形式,即可得到復數的虛部.【詳解】由題可知,所以的虛部是1.故選:D.【點睛】本題考查復數的代數形式的混合運算,復數的基本概念,屬于基礎題.8、C【解析】
根據輔助角公式化簡三角函數式,結合為函數的一條對稱軸可求得,代入輔助角公式得的解析式.根據三角函數圖像平移變換,即可求得函數的解析式.【詳解】函數,由輔助角公式化簡可得,因為為函數圖象的一條對稱軸,代入可得,即,化簡可解得,即,所以將函數的圖象向右平行移動個單位長度可得,則,故選:C.【點睛】本題考查了輔助角化簡三角函數式的應用,三角函數對稱軸的應用,三角函數圖像平移變換的應用,屬于中檔題.9、B【解析】
由平行求出參數,再由數量積的坐標運算計算.【詳解】由,得,則,,,所以.故選:B.【點睛】本題考查向量平行的坐標表示,考查數量積的坐標運算,掌握向量數量積的坐標運算是解題關鍵.10、A【解析】
根據題意得到充分性,驗證a=2,b=1【詳解】a,b∈0,1∪1,+∞,當"a=b當logab=log故選:A.【點睛】本題考查了充分不必要條件,意在考查學生的計算能力和推斷能力.11、B【解析】
轉化為,構造函數,利用導數研究單調性,求函數最值,即得解.【詳解】由,可知.設,則,所以函數在上單調遞增,所以.所以.故的取值范圍是.故選:B【點睛】本題考查了導數在恒成立問題中的應用,考查了學生綜合分析,轉化劃歸,數學運算的能力,屬于中檔題.12、D【解析】
對于①,利用拋物線的定義,利用可判斷;對于②,設直線的方程為,與拋物線聯立,用坐標表示直線與直線的斜率乘積,即可判斷;對于③,將代入拋物線的方程可得,,從而,,利用韋達定理可得,再由,可用m表示,線段的中垂線與軸的交點(即圓心)橫坐標為,可得a,即可判斷.【詳解】如圖,設為拋物線的焦點,以線段為直徑的圓為,則圓心為線段的中點.設,到準線的距離分別為,,的半徑為,點到準線的距離為,顯然,,三點不共線,則.所以①正確.由題意可設直線的方程為,代入拋物線的方程,有.設點,的坐標分別為,,則,.所以.則直線與直線的斜率乘積為.所以②正確.將代入拋物線的方程可得,,從而,.根據拋物線的對稱性可知,,兩點關于軸對稱,所以過點,,的圓的圓心在軸上.由上,有,,則.所以,線段的中垂線與軸的交點(即圓心)橫坐標為,所以.于是,,代入,,得,所以.所以③正確.故選:D【點睛】本題考查了拋物線的性質綜合,考查了學生綜合分析,轉化劃歸,數形結合,數學運算的能力,屬于較難題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
求出雙曲線的漸近線方程,右準線方程,得到交點坐標代入拋物線方程求解即可.【詳解】解:雙曲線的右準線,漸近線,雙曲線的右準線與漸近線的交點,交點在拋物線上,可得:,解得.故答案為.【點睛】本題考查雙曲線的簡單性質以及拋物線的簡單性質的應用,是基本知識的考查,屬于基礎題.14、【解析】
作A關于平面α和β的對稱點M,N,交α和β與D,E,連接MN,AM,AN,DE,根據對稱性三角形ADC的周長為AB+AC+BC=MB+BC+CN,當四點共線時長度最短,結合對稱性和余弦定理求解.【詳解】作A關于平面α和β的對稱點M,N,交α和β與D,E,連接MN,AM,AN,DE,根據對稱性三角形ABC的周長為AB+AC+BC=MB+BC+CN,當M,B,C,N共線時,周長最小為MN設平面ADE交l于,O,連接OD,OE,顯然OD⊥l,OE⊥l,∠DOE=60°,∠MOA+∠AON=240°,OA=1,∠MON=120°,且OM=ON=OA=1,根據余弦定理,故MN2=1+1﹣2×1×1×cos120°=3,故MN.故答案為:.【點睛】此題考查求空間三角形邊長的最值,關鍵在于根據幾何性質找出對稱關系,結合解三角形知識求解.15、【解析】
建系,設設,由可得,進一步得到的坐標,再利用數量積的坐標運算即可得到答案.【詳解】以A為坐標原點,AD為x軸建立如圖所示的直角坐標系,設,則,所以,,由,得,即,又,所以,故,,所以.故答案為:2【點睛】本題考查利用坐標法求向量的數量積,考查學生的運算求解能力,是一道中檔題.16、3-260【解析】
(1)令求得所有項的系數和;(2)先求出展開式中的常數項與含的系數,再求展開式中的常數項.【詳解】將代入,得所有項的系數和為3.因為的展開式中含的項為,的展開式中含常數項,所以的展開式中的常數項為.故答案為:3;-260【點睛】本題考查利用二項展開式的通項公式解決二項展開式的特殊項問題,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)單調遞減區間為,單調遞增區間為,的極小值為,無極大值;(3)見解析.【解析】
(1)切點既在切線上又在曲線上得一方程,再根據斜率等于該點的導數再列一方程,解方程組即可;(2)先對求導數,根據導數判斷和求解即可.(3)把證明轉化為證明,然后證明極小值大于極大值即可.【詳解】解:(1)函數的定義域為由已知得,則,解得.(2)由題意得,則.當時,,所以單調遞減,當時,,所以單調遞增,所以,單調遞減區間為,單調遞增區間為,的極小值為,無極大值.(3)要證成立,只需證成立.令,則,當時,單調遞增,當時,單調遞減,所以的極大值為,即由(2)知,時,,且的最小值點與的最大值點不同,所以,即.所以,.【點睛】知識方面,考查建立方程組求未知數,利用導數求函數的單調區間和極值以及不等式的證明;能力方面,考查推理論證能力、分析問題和解決問題的能力以及運算求解能力;試題難度大.18、(1),(2)側面積取得最大值時,等腰三角形的腰的長度為【解析】試題分析:(1)由條件,,,所以S,;(2)令,所以得,通過求導分析,得在時取得極大值,也是最大值.試題解析:(1)設交于點,過作,垂足為,在中,,,在中,,所以S,(2)要使側面積最大,由(1)得:令,所以得,由得:當時,,當時,所以在區間上單調遞增,在區間上單調遞減,所以在時取得極大值,也是最大值;所以當時,側面積取得最大值,此時等腰三角形的腰長答:側面積取得最大值時,等腰三角形的腰的長度為.19、(1);(2)極小值為,遞減區間為:,遞增區間為.【解析】
(1)由題意得到關于實數的方程組,求解方程組,即可求得的值;(2)結合(1)中的值得出函數的解析式,即可利用導數求得函數的單調區間和極小值.【詳解】(1)由題意,函數,則,由當時,有極大值,則,解得.(2)由(1)可得函數的解析式為,則,令,即,解得,令,即,解得或,所以函數的單調減區間為,遞增區間為,當時,函數取得極小值,極小值為.當時,有極大值3.【點睛】本題主要考查了函數的極值的概念,以及利用導數求解函數的單調區間和極值,其中解答中熟記函數的極值的概念,以及函數的導數與原函數的關系,準確運算是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.20、(1)見解析(2)【解析】
(1)根據菱形性質可知,結合可得,進而可證明,即,即可由線面垂直的判定定理證明平面;(2)結合(1)可證明兩兩互相垂直.即以為坐標原點,的方向為軸正方向,為單位長度,建立空間直角坐標系,寫出各個點的坐標,并求得平面和平面的法向量,即可求得二面角的余弦值.【詳解】(1)證明:設,連接,如下圖所示:∵側面為菱形,∴,且為及的中點,又,則為直角三角形,,又,,即,而為平面內的兩條相交直線,平面.(2)平面,平面,,即,從而兩兩互相垂直.以為坐標原點,的方向為軸正方向,為單位長度,建立如圖的空間直角坐標系,為等邊三角形,,,,設平面的法向量為,則,即,∴可取,設平面的法向量為,則.同理可取,由圖示可知二面角為銳二面角,∴二面角的余弦值為.【點睛】本題考查了線
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 影視劇群眾演員化妝間租賃及化妝師服務協議
- 物流倉儲貨架安裝與物流信息系統對接合同
- 抖音平臺用戶隱私保護與數據安全合作協議
- 2025年中國八氟戊醇行業市場規模及投資前景預測分析報告
- 2025年中國按摩機器人行業市場前景預測及投資價值評估分析報告
- 濕地公園水生植物種植與生態修復工程合作協議
- 橋梁加固工程臨時檢測員職責與聘用合同
- 電商平臺會員體系與大數據分析服務合同
- 數字直播電商渠道服裝選品及供應鏈管理協議
- 痘博士服務協議書
- 大數據與人工智能營銷智慧樹知到期末考試答案章節答案2024年南昌大學
- 工程建設平移合同范本
- 新《主體結構及裝飾裝修》考試習題庫(濃縮500題)
- 免拆底模鋼筋桁架樓承板圖集
- 尋夢環游記(Coco)中英文臺詞對照
- 寧夏2022年中考地理試卷(含答案)
- 頸椎骨折的護理課件
- 道德與法治《我們的衣食之源》教案教學設計(公開課)四年級下冊
- Unit6 Living History of Culture同步梳理-【中職專用】高三英語寒假自學課(高教版2021·基礎模塊3)
- 反應堆熱工分析課程設計報告書
- TL-PMM180超低煙塵使用及維護培訓
評論
0/150
提交評論