2023-2024學年貴州省黔西縣市級名校中考一模數學試題含解析_第1頁
2023-2024學年貴州省黔西縣市級名校中考一模數學試題含解析_第2頁
2023-2024學年貴州省黔西縣市級名校中考一模數學試題含解析_第3頁
2023-2024學年貴州省黔西縣市級名校中考一模數學試題含解析_第4頁
2023-2024學年貴州省黔西縣市級名校中考一模數學試題含解析_第5頁
已閱讀5頁,還剩16頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023-2024學年貴州省黔西縣市級名校中考一模數學試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.-的立方根是()A.-8 B.-4 C.-2 D.不存在2.如圖,在五邊形ABCDE中,∠A+∠B+∠E=300°,DP,CP分別平分∠EDC、∠BCD,則∠P的度數是()A.60° B.65° C.55° D.50°3.若在同一直角坐標系中,正比例函數y=k1x與反比例函數y=的圖象無交點,則有()A.k1+k2>0 B.k1+k2<0 C.k1k2>0 D.k1k2<04.在a2□4a□4的空格□中,任意填上“+”或“﹣”,在所有得到的代數式中,能構成完全平方式的概率是()A.1B.12C.135.如圖,平行四邊形ABCD的對角線AC、BD相交于點O,AE平分∠BAD,分別交BC、BD于點E、P,連接OE,∠ADC=60°,AB=BC=1,則下列結論:①∠CAD=30°②BD=③S平行四邊形ABCD=AB?AC④OE=AD⑤S△APO=,正確的個數是()A.2 B.3 C.4 D.56.二次函數y=ax2+bx+c(a≠0)的圖象如圖,a,b,c的取值范圍()A.a<0,b<0,c<0B.a<0,b>0,c<0C.a>0,b>0,c<0D.a>0,b<0,c<07.下列實數中是無理數的是()A. B.2﹣2 C.5. D.sin45°8.如圖,小明為了測量河寬AB,先在BA延長線上取一點D,再在同岸取一點C,測得∠CAD=60°,∠BCA=30°,AC=15m,那么河AB寬為()A.15m B.m C.m D.m9.若55+55+55+55+55=25n,則n的值為()A.10 B.6 C.5 D.310.實數a,b,c在數軸上對應點的位置如圖所示,則下列結論中正確的是()A.a+c>0 B.b+c>0 C.ac>bc D.a﹣c>b﹣c11.如圖,四邊形ABCD是⊙O的內接四邊形,⊙O的半徑為6,∠ADC=60°,則劣弧AC的長為()A.2π B.4π C.5π D.6π12.如圖,在四邊形ABCD中,∠A=120°,∠C=80°.將△BMN沿著MN翻折,得到△FMN.若MF∥AD,FN∥DC,則∠F的度數為()A.70° B.80° C.90° D.100°二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,在△ABC中,BC=8,高AD=6,矩形EFGH的一邊EF在邊BC上,其余兩個頂點G、H分別在邊AC、AB上,則矩形EFGH的面積最大值為_____.14.我國古代數學著作《九章算術》卷七有下列問題:“今有共買物,人出八,盈三;人出七,不足四.問人數、物價幾何?”意思是:現在有幾個人共同出錢去買件物品,如果每人出8錢,則剩余3錢;如果每人出7錢,則差4錢.問有多少人,物品的價格是多少?設有人,則可列方程為__________.15.如圖,矩形ABCD中,AB=3,BC=5,點P是BC邊上的一個動點(點P與點B,C都不重合),現將△PCD沿直線PD折疊,使點C落到點F處;過點P作∠BPF的角平分線交AB于點E.設BP=x,BE=y,則下列圖象中,能表示y與x的函數關系的圖象大致是()16.如圖是一張長方形紙片ABCD,已知AB=8,AD=7,E為AB上一點,AE=5,現要剪下一張等腰三角形紙片(△AEP),使點P落在長方形ABCD的某一條邊上,則等腰三角形AEP的底邊長是_____________.17.若不等式組x<4x<m的解集是x<4,則m18.如圖,已知⊙O1與⊙O2相交于A、B兩點,延長連心線O1O2交⊙O2于點P,聯結PA、PB,若∠APB=60°,AP=6,那么⊙O2的半徑等于________.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)列方程解應用題:某商場用8萬元購進一批新款襯衫,上架后很快銷售一空,商場又緊急購進第二批這種襯衫,數量是第一次的2倍,但進價漲了4元/件,結果共用去17.6萬元.該商場第一批購進襯衫多少件?商場銷售這種襯衫時,每件定價都是58元,剩至150件時按八折出售,全部售完.售完這兩批襯衫,商場共盈利多少元?20.(6分)如圖,在△ABC中,∠ABC=90°.(1)作∠ACB的平分線交AB邊于點O,再以點O為圓心,OB的長為半徑作⊙O;(要求:不寫做法,保留作圖痕跡)(2)判斷(1)中AC與⊙O的位置關系,直接寫出結果.21.(6分)已知,平面直角坐標系中的點A(a,1),t=ab﹣a2﹣b2(a,b是實數)(1)若關于x的反比例函數y=過點A,求t的取值范圍.(2)若關于x的一次函數y=bx過點A,求t的取值范圍.(3)若關于x的二次函數y=x2+bx+b2過點A,求t的取值范圍.22.(8分)某中學響應“陽光體育”活動的號召,準備從體育用品商店購買一些排球、足球和籃球,排球和足球的單價相同,同一種球的單價相同,若購買2個足球和3個籃球共需340元,購買4個排球和5個籃球共需600元.(1)求購買一個足球,一個籃球分別需要多少元?(2)該中學根據實際情況,需從體育用品商店一次性購買三種球共100個,且購買三種球的總費用不超過6000元,求這所中學最多可以購買多少個籃球?23.(8分)先化簡,再求值:,其中滿足.24.(10分)某中學七、八年級各選派10名選手參加知識競賽,計分采用10分制,選手得分均為整數,成績達到6分或6分以上為合格,達到9分或10分為優秀,這次競賽后,七、八年級兩支代表隊選手成績分布的條形統計圖和成績統計分析表如下,其中七年級代表隊得6分、10分的選手人數分別為a、b.隊別平均分中位數方差合格率優秀率七年級6.7m3.4190%n八年級7.17.51.6980%10%(1)請依據圖表中的數據,求a、b的值;(2)直接寫出表中的m、n的值;(3)有人說七年級的合格率、優秀率均高于八年級;所以七年級隊成績比八年級隊好,但也有人說八年級隊成績比七年級隊好.請你給出兩條支持八年級隊成績好的理由.25.(10分)根據函數學習中積累的知識與經驗,李老師要求學生探究函數y=+1的圖象.同學們通過列表、描點、畫圖象,發現它的圖象特征,請你補充完整.(1)函數y=+1的圖象可以由我們熟悉的函數的圖象向上平移個單位得到;(2)函數y=+1的圖象與x軸、y軸交點的情況是:;(3)請你構造一個函數,使其圖象與x軸的交點為(2,0),且與y軸無交點,這個函數表達式可以是.26.(12分)如圖,一次函數y=ax+b的圖象與反比例函數的圖象交于A,B兩點,與X軸交于點C,與Y軸交于點D,已知,A(n,1),點B的坐標為(﹣2,m)(1)求反比例函數的解析式和一次函數的解析式;(2)連結BO,求△AOB的面積;(3)觀察圖象直接寫出一次函數的值大于反比例函數的值時x的取值范圍是.27.(12分)2015年1月,市教育局在全市中小學中選取了63所學校從學生的思想品德、學業水平、學業負擔、身心發展和興趣特長五個維度進行了綜合評價.評價小組在選取的某中學七年級全體學生中隨機抽取了若干名學生進行問卷調查,了解他們每天在課外用于學習的時間,并繪制成如下不完整的統計圖.根據上述信息,解答下列問題:(1)本次抽取的學生人數是______;扇形統計圖中的圓心角α等于______;補全統計直方圖;(2)被抽取的學生還要進行一次50米跑測試,每5人一組進行.在隨機分組時,小紅、小花兩名女生被分到同一個小組,請用列表法或畫樹狀圖求出她倆在抽道次時抽在相鄰兩道的概率.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、C【解析】分析:首先求出的值,然后根據立方根的計算法則得出答案.詳解:∵,,∴的立方根為-2,故選C.點睛:本題主要考查的是算術平方根與立方根,屬于基礎題型.理解算術平方根與立方根的含義是解決本題的關鍵.2、A【解析】試題分析:根據五邊形的內角和等于540°,由∠A+∠B+∠E=300°,可求∠BCD+∠CDE的度數,再根據角平分線的定義可得∠PDC與∠PCD的角度和,進一步求得∠P的度數.解:∵五邊形的內角和等于540°,∠A+∠B+∠E=300°,∴∠BCD+∠CDE=540°﹣300°=240°,∵∠BCD、∠CDE的平分線在五邊形內相交于點O,∴∠PDC+∠PCD=(∠BCD+∠CDE)=120°,∴∠P=180°﹣120°=60°.故選A.考點:多邊形內角與外角;三角形內角和定理.3、D【解析】當k1,k2同號時,正比例函數y=k1x與反比例函數y=的圖象有交點;當k1,k2異號時,正比例函數y=k1x與反比例函數y=的圖象無交點,即可得當k1k2<0時,正比例函數y=k1x與反比例函數y=的圖象無交點,故選D.4、B【解析】試題解析:能夠湊成完全平方公式,則4a前可是“-”,也可以是“+”,但4前面的符號一定是:“+”,此題總共有(-,-)、(+,+)、(+,-)、(-,+)四種情況,能構成完全平方公式的有2種,所以概率是12故選B.考點:1.概率公式;2.完全平方式.5、D【解析】

①先根據角平分線和平行得:∠BAE=∠BEA,則AB=BE=1,由有一個角是60度的等腰三角形是等邊三角形得:△ABE是等邊三角形,由外角的性質和等腰三角形的性質得:∠ACE=30°,最后由平行線的性質可作判斷;②先根據三角形中位線定理得:OE=AB=,OE∥AB,根據勾股定理計算OC=和OD的長,可得BD的長;③因為∠BAC=90°,根據平行四邊形的面積公式可作判斷;④根據三角形中位線定理可作判斷;⑤根據同高三角形面積的比等于對應底邊的比可得:S△AOE=S△EOC=OE?OC=,,代入可得結論.【詳解】①∵AE平分∠BAD,∴∠BAE=∠DAE,∵四邊形ABCD是平行四邊形,∴AD∥BC,∠ABC=∠ADC=60°,∴∠DAE=∠BEA,∴∠BAE=∠BEA,∴AB=BE=1,∴△ABE是等邊三角形,∴AE=BE=1,∵BC=2,∴EC=1,∴AE=EC,∴∠EAC=∠ACE,∵∠AEB=∠EAC+∠ACE=60°,∴∠ACE=30°,∵AD∥BC,∴∠CAD=∠ACE=30°,故①正確;②∵BE=EC,OA=OC,∴OE=AB=,OE∥AB,∴∠EOC=∠BAC=60°+30°=90°,Rt△EOC中,OC=,∵四邊形ABCD是平行四邊形,∴∠BCD=∠BAD=120°,∴∠ACB=30°,∴∠ACD=90°,Rt△OCD中,OD=,∴BD=2OD=,故②正確;③由②知:∠BAC=90°,∴S?ABCD=AB?AC,故③正確;④由②知:OE是△ABC的中位線,又AB=BC,BC=AD,∴OE=AB=AD,故④正確;⑤∵四邊形ABCD是平行四邊形,∴OA=OC=,∴S△AOE=S△EOC=OE?OC=××,∵OE∥AB,∴,∴,∴S△AOP=S△AOE==,故⑤正確;本題正確的有:①②③④⑤,5個,故選D.【點睛】本題考查了平行四邊形的性質、等腰三角形的性質、直角三角形30度角的性質、三角形面積和平行四邊形面積的計算;熟練掌握平行四邊形的性質,證明△ABE是等邊三角形是解決問題的關鍵,并熟練掌握同高三角形面積的關系.6、D【解析】試題分析:根據二次函數的圖象依次分析各項即可。由拋物線開口向上,可得,再由對稱軸是,可得,由圖象與y軸的交點再x軸下方,可得,故選D.考點:本題考查的是二次函數的性質點評:解答本題的關鍵是熟練掌握二次函數的性質:的正負決定拋物線開口方向,對稱軸是,C的正負決定與Y軸的交點位置。7、D【解析】A、是有理數,故A選項錯誤;B、是有理數,故B選項錯誤;C、是有理數,故C選項錯誤;D、是無限不循環小數,是無理數,故D選項正確;故選:D.8、A【解析】過C作CE⊥AB,Rt△ACE中,∵∠CAD=60°,AC=15m,∴∠ACE=30°,AE=AC=×15=7.5m,CE=AC?cos30°=15×=,∵∠BAC=30°,∠ACE=30°,∴∠BCE=60°,∴BE=CE?tan60°=×=22.5m,∴AB=BE﹣AE=22.5﹣7.5=15m,故選A.【點睛】本題考查的知識點是解直角三角形的應用,關鍵是構建直角三角形,解直角三角形求出答案.9、D【解析】

直接利用提取公因式法以及冪的乘方運算法則將原式變形進而得出答案.【詳解】解:∵55+55+55+55+55=25n,∴55×5=52n,則56=52n,解得:n=1.故選D.【點睛】此題主要考查了冪的乘方運算,正確將原式變形是解題關鍵.10、D【解析】分析:根據圖示,可得:c<b<0<a,,據此逐項判定即可.詳解:∵c<0<a,|c|>|a|,∴a+c<0,∴選項A不符合題意;∵c<b<0,∴b+c<0,∴選項B不符合題意;∵c<b<0<a,c<0,∴ac<0,bc>0,∴ac<bc,∴選項C不符合題意;∵a>b,∴a﹣c>b﹣c,∴選項D符合題意.故選D.點睛:此題考查了數軸,考查了有理數的大小比較關系,考查了不等關系與不等式.熟記有理數大小比較法則,即正數大于0,負數小于0,正數大于一切負數.11、B【解析】

連接OA、OC,然后根據圓周角定理求得∠AOC的度數,最后根據弧長公式求解.【詳解】連接OA、OC,∵∠ADC=60°,∴∠AOC=2∠ADC=120°,則劣弧AC的長為:=4π.故選B.【點睛】本題考查了弧長的計算以及圓周角定理,解答本題的關鍵是掌握弧長公式.12、B【解析】

首先利用平行線的性質得出∠BMF=120°,∠FNB=80°,再利用翻折變換的性質得出∠FMN=∠BMN=60°,∠FNM=∠MNB=40°,進而求出∠B的度數以及得出∠F的度數.【詳解】∵MF∥AD,FN∥DC,∠A=120°,∠C=80°,

∴∠BMF=120°,∠FNB=80°,

∵將△BMN沿MN翻折得△FMN,

∴∠FMN=∠BMN=60°,∠FNM=∠MNB=40°,

∴∠F=∠B=180°-60°-40°=80°,

故選B.【點睛】主要考查了平行線的性質以及多邊形內角和定理以及翻折變換的性質,得出∠FMN=∠BMN,∠FNM=∠MNB是解題關鍵.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、1【解析】

設HG=x,根據相似三角形的性質用x表示出KD,根據矩形面積公式列出二次函數解析式,根據二次函數的性質計算即可.【詳解】解:設HG=x.∵四邊形EFGH是矩形,∴HG∥BC,∴△AHG∽△ABC,∴=,即=,解得:KD=6﹣x,則矩形EFGH的面積=x(6﹣x)=﹣x2+6x=(x﹣4)2+1,則矩形EFGH的面積最大值為1.故答案為1.【點睛】本題考查的是相似三角形的判定和性質、二次函數的性質,掌握相似三角形的判定定理和性質定理是解題的關鍵.14、【解析】

根據每人出8錢,則剩余3錢;如果每人出7錢,則差4錢,可以列出相應的方程,本題得以解決【詳解】解:由題意可設有人,列出方程:故答案為【點睛】本題考查由實際問題抽象出一元一次方程,解答本題的關鍵是明確題意,列出相應的方程.15、C【解析】

先證明△BPE∽△CDP,再根據相似三角形對應邊成比例列出式子變形可得.【詳解】由已知可知∠EPD=90°,∴∠BPE+∠DPC=90°,∵∠DPC+∠PDC=90°,∴∠CDP=∠BPE,∵∠B=∠C=90°,∴△BPE∽△CDP,∴BP:CD=BE:CP,即x:3=y:(5-x),∴y=(0<x<5);故選C.考點:1.折疊問題;2.相似三角形的判定和性質;3.二次函數的圖象.16、或或1【解析】

如圖所示:①當AP=AE=1時,∵∠BAD=90°,∴△AEP是等腰直角三角形,∴底邊PE=AE=;②當PE=AE=1時,∵BE=AB﹣AE=8﹣1=3,∠B=90°,∴PB==4,∴底邊AP===;③當PA=PE時,底邊AE=1;綜上所述:等腰三角形AEP的對邊長為或或1;故答案為或或1.17、m≥1.【解析】∵不等式組x<4x<m的解集是x∴m≥1,故答案為m≥1.18、2【解析】

由題意得出△ABP為等邊三角形,在Rt△ACO2中,AO2=即可.【詳解】由題意易知:PO1⊥AB,∵∠APB=60°∴△ABP為等邊三角形,AC=BC=3∴圓心角∠AO2O1=60°∴在Rt△ACO2中,AO2==2.故答案為2.【點睛】本題考查的知識點是圓的性質,解題的關鍵是熟練的掌握圓的性質.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)2000件;(2)90260元.【解析】

(1)設該商場第一批購進襯衫x件,則第二批購進襯衫2x件,根據單價=總價÷數量結合第二批比第一批的進價漲了4元/件,即可得出關于x的分式方程,解之經檢驗后即可得出結論;(2)用(1)的結論×2可求出第二批購進該種襯衫的數量,再利用總利潤=銷售收入-成本,即可得出結論.【詳解】解:(1)設該商場第一批購進襯衫x件,則第二批購進襯衫2x件,根據題意得:-=4,解得:x=2000,經檢驗,x=2000是所列分式方程的解,且符合題意.答:商場第一批購進襯衫2000件.(2)2000×2=4000(件),(2000+4000-150)×58+150×58×0.8-80000-176000=90260(元).答:售完這兩批襯衫,商場共盈利90260元.【點睛】本題考查了分式方程的應用,解題的關鍵是:(1)找準等量關系,正確列出分式方程;(2)根據數量關系,列式計算.20、(1)見解析(2)相切【解析】

(1)首先利用角平分線的作法得出CO,進而以點O為圓心,OB為半徑作⊙O即可;(2)利用角平分線的性質以及直線與圓的位置關系進而求出即可.【詳解】(1)如圖所示:;(2)相切;過O點作OD⊥AC于D點,∵CO平分∠ACB,∴OB=OD,即d=r,∴⊙O與直線AC相切,【點睛】此題主要考查了復雜作圖以及角平分線的性質與作法和直線與圓的位置關系,正確利用角平分線的性質求出d=r是解題關鍵.21、(1)t≤﹣;(2)t≤3;(3)t≤1.【解析】

(1)把點A的坐標代入反比例函數解析式求得a的值;然后利用二次函數的最值的求法得到t的取值范圍.

(2)把點A的坐標代入一次函數解析式求得a=;然后利用二次函數的最值的求法得到t的取值范圍.

(3)把點A的坐標代入二次函數解析式求得以a2+b2=1-ab;然后利用非負數的性質得到t的取值范圍.【詳解】解:(1)把A(a,1)代入y=得到:1=,解得a=1,則t=ab﹣a2﹣b2=b﹣1﹣b2=﹣(b﹣)2﹣.因為拋物線t=﹣(b﹣)2﹣的開口方向向下,且頂點坐標是(,﹣),所以t的取值范圍為:t≤﹣;(2)把A(a,1)代入y=bx得到:1=ab,所以a=,則t=ab﹣a2﹣b2=﹣(a2+b2)+1=﹣(b+)2+3≤3,故t的取值范圍為:t≤3;(3)把A(a,1)代入y=x2+bx+b2得到:1=a2+ab+b2,所以ab=1﹣(a2+b2),則t=ab﹣a2﹣b2=1﹣2(a2+b2)≤1,故t的取值范圍為:t≤1.【點睛】本題考查了反比例函數、一次函數以及二次函數的性質.代入求值時,注意配方法的應用.22、(1)一個足球需要50元,一個籃球需要80元;(2)1個.【解析】

(1)設購買一個足球需要x元,則購買一個排球也需要x元,購買一個籃球y元,根據購買2個足球和3個籃球共需340元,4個排球和5個籃球共需600元,可得出方程組,解出即可;【詳解】(1)設購買一個足球需要x元,則購買一個排球也需要x元,購買一個籃球y元,由題意得:2x+3y=解得:x=50y=80答:購買一個足球需要50元,購買一個籃球需要80元;(2)設該中學購買籃球m個,由題意得:80m+50(100﹣m)≤6000,解得:m≤113∵m是整數,∴m最大可取1.答:這所中學最多可以購買籃球1個.【點睛】本題考查了一元一次不等式及二元一次方程組的知識,解答本題的關鍵是仔細審題,得到等量關系及不等關系,難度一般.23、1【解析】試題分析:原式第一項括號中兩項通分并利用同分母分式的減法法則計算,同時利用除法法則變形,約分后,兩項通分并利用同分母分式的減法法則計算得到最簡結果,已知方程變形后代入計算即可求出值.試題解析:原式=∵x2?x?1=0,∴x2=x+1,則原式=1.24、(1)a=5,b=1;(2)6;20%;(3)八年級平均分高于七年級,方差小于七年級.【解析】試題分析:(1)根據題中數據求出a與b的值即可;(2)根據(1)a與b的值,確定出m與n的值即可;(3)從方差,平均分角度考慮,給出兩條支持八年級隊成績好的理由即可.試題解析:(1)根據題意得:解得a=5,b=1;(2)七年級成績為3,6,6,6,6,6,7,8,9,10,中位數為6,即m=6;優秀率為=20%,即n=20%;(3)八年級平均分高于七年級,方差小于七年級,成績比較穩定,故八年級隊比七年級隊成績好.考點:1.條形統計圖;2.統計表;3.加權平均數;4.中位數;5.方差.25、(1),1;(2)與x軸交于(﹣1,0),與y軸沒交點;(3)答案不唯一,如:y=﹣+1.【解析】

(1)根據函數圖象的平移規律,可得答案;(2)根據自變量與函數值的對應關系,可得答案;(3)根據點的坐標滿足函數解析式,可得答案.【詳解】(1)函數的圖象可以由我們

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論