




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
數(shù)學(xué)初中和高中數(shù)學(xué)知識(shí)點(diǎn)及公式大全1過(guò)兩點(diǎn)有且只有一條直線2兩點(diǎn)之間線段最短3同角或等角的補(bǔ)角相等4同角或等角的余角相等5過(guò)一點(diǎn)有且只有一條直線和已知直線垂直6直線外一點(diǎn)與直線上各點(diǎn)連接的所有線段中,垂線段最短7平行公理經(jīng)過(guò)直線外一點(diǎn),有且只有一條直線與這條直線平行8如果兩條直線都和第三條直線平行,這兩條直線也互相平行9同位角相等,兩直線平行10內(nèi)錯(cuò)角相等,兩直線平行11同旁內(nèi)角互補(bǔ),兩直線平行12兩直線平行,同位角相等13兩直線平行,內(nèi)錯(cuò)角相等4兩直線平行,同旁內(nèi)角互補(bǔ)15定理三角形兩邊的和大于第三邊16推論三角形兩邊的差小于第三邊17三角形內(nèi)角和定理三角形三個(gè)內(nèi)角的和等于180°18推論1直角三角形的兩個(gè)銳角互余19推論2三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角的和20推論3三角形的一個(gè)外角大于任何一個(gè)和它不相鄰的內(nèi)角21全等三角形的對(duì)應(yīng)邊、對(duì)應(yīng)角相等22邊角邊公理(SAS)有兩邊和它們的夾角對(duì)應(yīng)相等的兩個(gè)三角形全等23角邊角公理(ASA)有兩角和它們的夾邊對(duì)應(yīng)相等的兩個(gè)三角形全等24推論(AAS)有兩角和其中一角的對(duì)邊對(duì)應(yīng)相等的兩個(gè)三角形全等25邊邊邊公理(SSS)有三邊對(duì)應(yīng)相等的兩個(gè)三角形全等26斜邊、直角邊公理(HL)有斜邊和一條直角邊對(duì)應(yīng)相等的兩個(gè)直角三角形全等27定理1在角的平分線上的點(diǎn)到這個(gè)角的兩邊的距離相等28定理2到一個(gè)角的兩邊的距離相同的點(diǎn),在這個(gè)角的平分線上29角的平分線是到角的兩邊距離相等的所有點(diǎn)的集合30等腰三角形的性質(zhì)定理等腰三角形的兩個(gè)底角相等(即等邊對(duì)等角)31推論1等腰三角形頂角的平分線平分底邊并且垂直于底邊32等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合33推論3等邊三角形的各角都相等,并且每一個(gè)角都等于60°34等腰三角形的判定定理如果一個(gè)三角形有兩個(gè)角相等,那么這兩個(gè)角所對(duì)的邊也相等(等角對(duì)等邊)35推論1三個(gè)角都相等的三角形是等邊三角形36推論2有一個(gè)角等于60°的等腰三角形是等邊三角形37在直角三角形中,如果一個(gè)銳角等于30°那么它所對(duì)的直角邊等于斜邊的一半38直角三角形斜邊上的中線等于斜邊上的一半39定理線段垂直平分線上的點(diǎn)和這條線段兩個(gè)端點(diǎn)的距離相等40逆定理和一條線段兩個(gè)端點(diǎn)距離相等的點(diǎn),在這條線段的垂直平分線上41線段的垂直平分線可看作和線段兩端點(diǎn)距離相等的所有點(diǎn)的集合42定理1關(guān)于某條直線對(duì)稱的兩個(gè)圖形是全等形43定理2如果兩個(gè)圖形關(guān)于某直線對(duì)稱,那么對(duì)稱軸是對(duì)應(yīng)點(diǎn)連線的垂直平分線44定理3兩個(gè)圖形關(guān)于某直線對(duì)稱,如果它們的對(duì)應(yīng)線段或延長(zhǎng)線相交,那么交點(diǎn)在對(duì)稱軸上45逆定理如果兩個(gè)圖形的對(duì)應(yīng)點(diǎn)連線被同一條直線垂直平分,那么這兩個(gè)圖形關(guān)于這條直線對(duì)稱46勾股定理直角三角形兩直角邊a、b的平方和、等于斜邊c的平方,即a^2+b^2=c^247勾股定理的逆定理如果三角形的三邊長(zhǎng)a、b、c有關(guān)系a^2+b^2=c^2,那么這個(gè)三角形是直角三角形48定理四邊形的內(nèi)角和等于360°49四邊形的外角和等于360°50多邊形內(nèi)角和定理n邊形的內(nèi)角的和等于(n-2)×180°51推論任意多邊的外角和等于360°52平行四邊形性質(zhì)定理1平行四邊形的對(duì)角相等53平行四邊形性質(zhì)定理2平行四邊形的對(duì)邊相等54推論夾在兩條平行線間的平行線段相等55平行四邊形性質(zhì)定理3平行四邊形的對(duì)角線互相平分56平行四邊形判定定理1兩組對(duì)角分別相等的四邊形是平行四邊形57平行四邊形判定定理2兩組對(duì)邊分別相等的四邊形是平行四邊形58平行四邊形判定定理3對(duì)角線互相平分的四邊形是平行四邊形59平行四邊形判定定理4一組對(duì)邊平行相等的四邊形是平行四邊形60矩形性質(zhì)定理1矩形的四個(gè)角都是直角61矩形性質(zhì)定理2矩形的對(duì)角線相等62矩形判定定理1有三個(gè)角是直角的四邊形是矩形63矩形判定定理2對(duì)角線相等的平行四邊形是矩形64菱形性質(zhì)定理1菱形的四條邊都相等65菱形性質(zhì)定理2菱形的對(duì)角線互相垂直,并且每一條對(duì)角線平分一組對(duì)角66菱形面積=對(duì)角線乘積的一半,即S=(a×b)÷267菱形判定定理1四邊都相等的四邊形是菱形68菱形判定定理2對(duì)角線互相垂直的平行四邊形是菱形69正方形性質(zhì)定理1正方形的四個(gè)角都是直角,四條邊都相等70正方形性質(zhì)定理2正方形的兩條對(duì)角線相等,并且互相垂直平分,每條對(duì)角線平分一組對(duì)角71定理1關(guān)于中心對(duì)稱的兩個(gè)圖形是全等的72定理2關(guān)于中心對(duì)稱的兩個(gè)圖形,對(duì)稱點(diǎn)連線都經(jīng)過(guò)對(duì)稱中心,并且被對(duì)稱中心平分73逆定理如果兩個(gè)圖形的對(duì)應(yīng)點(diǎn)連線都經(jīng)過(guò)某一點(diǎn),并且被這一點(diǎn)平分,那么這兩個(gè)圖形關(guān)于這一點(diǎn)對(duì)稱74等腰梯形性質(zhì)定理等腰梯形在同一底上的兩個(gè)角相等75等腰梯形的兩條對(duì)角線相等76等腰梯形判定定理在同一底上的兩個(gè)角相等的梯形是等腰梯形77對(duì)角線相等的梯形是等腰梯形78平行線等分線段定理如果一組平行線在一條直線上截得的線段相等,那么在其他直線上截得的線段也相等79推論1經(jīng)過(guò)梯形一腰的中點(diǎn)與底平行的直線,必平分另一腰80推論2經(jīng)過(guò)三角形一邊的中點(diǎn)與另一邊平行的直線,必平分第三邊81三角形中位線定理三角形的中位線平行于第三邊,并且等于它的一半82梯形中位線定理梯形的中位線平行于兩底,并且等于兩底和的一半L=(a+b)÷2S=L×h83(1)比例的基本性質(zhì)如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d84(2)合比性質(zhì)如果a/b=c/d,那么(a±b)/b=(c±d)/d85(3)等比性質(zhì)如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b86平行線分線段成比例定理三條平行線截兩條直線,所得的對(duì)應(yīng)線段成比例87推論平行于三角形一邊的直線截其他兩邊(或兩邊的延長(zhǎng)線),所得的對(duì)應(yīng)線段成比例88定理如果一條直線截三角形的兩邊(或兩邊的延長(zhǎng)線)所得的對(duì)應(yīng)線段成比例,那么這條直線平行于三角形的第三邊89平行于三角形的一邊,并且和其他兩邊相交的直線,所截得的三角形的三邊與原三角形三邊對(duì)應(yīng)成比例90定理平行于三角形一邊的直線和其他兩邊(或兩邊的延長(zhǎng)線)相交,所構(gòu)成的三角形與原三角形相似91相似三角形判定定理1兩角對(duì)應(yīng)相等,兩三角形相似(ASA)92直角三角形被斜邊上的高分成的兩個(gè)直角三角形和原三角形相似93判定定理2兩邊對(duì)應(yīng)成比例且夾角相等,兩三角形相似(SAS)94判定定理3三邊對(duì)應(yīng)成比例,兩三角形相似(SSS)95定理如果一個(gè)直角三角形的斜邊和一條直角邊與另一個(gè)直角三角形的斜邊和一條直角邊對(duì)應(yīng)成比例,那么這兩個(gè)直角三角形相似96性質(zhì)定理1相似三角形對(duì)應(yīng)高的比,對(duì)應(yīng)中線的比與對(duì)應(yīng)角平分線的比都等于相似比97性質(zhì)定理2相似三角形周長(zhǎng)的比等于相似比98性質(zhì)定理3相似三角形面積的比等于相似比的平方99任意銳角的正弦值等于它的余角的余弦值,任意銳角的余弦值等于它的余角的正弦值100任意銳角的正切值等于它的余角的余切值,任意銳角的余切值等于它的余角的正切值101圓是定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的集合102圓的內(nèi)部可以看作是圓心的距離小于半徑的點(diǎn)的集合103圓的外部可以看作是圓心的距離大于半徑的點(diǎn)的集合104同圓或等圓的半徑相等105到定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的軌跡,是以定點(diǎn)為圓心,定長(zhǎng)為半徑的圓106和已知線段兩個(gè)端點(diǎn)的距離相等的點(diǎn)的軌跡,是著條線段的垂直平分線107到已知角的兩邊距離相等的點(diǎn)的軌跡,是這個(gè)角的平分線108到兩條平行線距離相等的點(diǎn)的軌跡,是和這兩條平行線平行且距離相等的一條直線109定理不在同一直線上的三點(diǎn)確定一個(gè)圓。110垂徑定理垂直于弦的直徑平分這條弦并且平分弦所對(duì)的兩條弧111推論1①平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對(duì)的兩條?、谙业拇怪逼椒志€經(jīng)過(guò)圓心,并且平分弦所對(duì)的兩條?、燮椒窒宜鶎?duì)的一條弧的直徑,垂直平分弦,并且平分弦所對(duì)的另一條弧112推論2圓的兩條平行弦所夾的弧相等113圓是以圓心為對(duì)稱中心的中心對(duì)稱圖形114定理在同圓或等圓中,相等的圓心角所對(duì)的弧相等,所對(duì)的弦相等,所對(duì)的弦的弦心距相等115推論在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對(duì)應(yīng)的其余各組量都相等116定理一條弧所對(duì)的圓周角等于它所對(duì)的圓心角的一半117推論1同弧或等弧所對(duì)的圓周角相等;同圓或等圓中,相等的圓周角所對(duì)的弧也相等118推論2半圓(或直徑)所對(duì)的圓周角是直角;90°的圓周角所對(duì)的弦是直徑119推論3如果三角形一邊上的中線等于這邊的一半,那么這個(gè)三角形是直角三角形120定理圓的內(nèi)接四邊形的對(duì)角互補(bǔ),并且任何一個(gè)外角都等于它的內(nèi)對(duì)角121①直線L和⊙O相交d<r122切線的判定定理經(jīng)過(guò)半徑的外端并且垂直于這條半徑的直線是圓的切線123切線的性質(zhì)定理圓的切線垂直于經(jīng)過(guò)切點(diǎn)的半徑124推論1經(jīng)過(guò)圓心且垂直于切線的直線必經(jīng)過(guò)切點(diǎn)125推論2經(jīng)過(guò)切點(diǎn)且垂直于切線的直線必經(jīng)過(guò)圓心126切線長(zhǎng)定理從圓外一點(diǎn)引圓的兩條切線,它們的切線長(zhǎng)相等,圓心和這一點(diǎn)的連線平分兩條切線的夾角127圓的外切四邊形的兩組對(duì)邊的和相等128弦切角定理弦切角等于它所夾的弧對(duì)的圓周角129推論如果兩個(gè)弦切角所夾的弧相等,那么這兩個(gè)弦切角也相等130相交弦定理圓內(nèi)的兩條相交弦,被交點(diǎn)分成的兩條線段長(zhǎng)的積相等131推論如果弦與直徑垂直相交,那么弦的一半是它分直徑所成的兩條線段的比例中項(xiàng)132切割線定理從圓外一點(diǎn)引圓的切線和割線,切線長(zhǎng)是這點(diǎn)到割線與圓交點(diǎn)的兩條線段長(zhǎng)的比例中項(xiàng)133推論從圓外一點(diǎn)引圓的兩條割線,這一點(diǎn)到每條割線與圓的交點(diǎn)的兩條線段長(zhǎng)的積相等134如果兩個(gè)圓相切,那么切點(diǎn)一定在連心線上135①兩圓外離d>R+r②兩圓外切d=R+r③兩圓相交R-r<d<R+r(R>r)?④兩圓內(nèi)切d=R-r(R>r)⑤兩圓內(nèi)含d<R-r(R>r)136定理相交兩圓的連心線垂直平分兩圓的公*弦137定理把圓分成n(n≥3):⑴依次連結(jié)各分點(diǎn)所得的多邊形是這個(gè)圓的內(nèi)接正n邊形⑵經(jīng)過(guò)各分點(diǎn)作圓的切線,以相鄰切線的交點(diǎn)為頂點(diǎn)的多邊形是這個(gè)圓的外切正n邊形138定理任何正多邊形都有一個(gè)外接圓和一個(gè)內(nèi)切圓,這兩個(gè)圓是同心圓139正n邊形的每個(gè)內(nèi)角都等于(n-2)×180°/n140定理正n邊形的半徑和邊心距把正n邊形分成2n個(gè)全等的直角三角形141正n邊形的面積Sn=pnrn/2p表示正n邊形的周長(zhǎng)142正三角形面積√3a/4a表示邊長(zhǎng)143如果在一個(gè)頂點(diǎn)周圍有k個(gè)正n邊形的角,由于這些角的和應(yīng)為360°,因此k×(n-2)180°/n=360°化為(n-2)(k-2)=4144弧長(zhǎng)撲愎?劍篖=n兀R/180145扇形面積公式:S扇形=n兀R^2/360=LR/2146內(nèi)公切線長(zhǎng)=d-(R-r)外公切線長(zhǎng)=d-(R+r)(還有一些,大家?guī)脱a(bǔ)充吧)實(shí)用工具:常用數(shù)學(xué)公式公式分類公式表達(dá)式乘法與因式分解a^2-b^2=(a+b)(a-b)a^3+b^3=(a+b)(a^2-ab+b^2)a^3-b^3=(a-b(a^2+ab+b^2)三角不等式|a+b|≤|a|+|b||a-b|≤|a|+|b||a|≤b<=>-b≤a≤b|a-b|≥|a|-|b|-|a|≤a≤|a|一元二次方程的解-b+√(b^2-4ac)/2a-b-√(b^2-4ac)/2a根與系數(shù)的關(guān)系X1+X2=-b/aX1*X2=c/a注:韋達(dá)定理判別式b^2-4ac=0注:方程有兩個(gè)相等的實(shí)根b^2-4ac>0注:方程有兩個(gè)不等的實(shí)根?b^2-4ac<0注:方程沒(méi)有實(shí)根,有*軛復(fù)數(shù)根三角函數(shù)公式兩角和公式sin(A+B)=sinAcosB+cosAsinBsin(A-B)=sinAcosB-sinBcosA?cos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB)tan(A-B)=(tanA-tanB)/(1+tanAtanB)cot(A+B)=(cotAcotB-1)/(cotB+cotA)?cot(A-B)=(cotAcotB+1)/(cotB-cotA)倍角公式tan2A=2tanA/[1-(tanA)^2]cos2a=(cosa)^2-(sina)^2=2(cosa)^2-1=1-2(sina)^2半角公式sin(A/2)=√((1-cosA)/2)sin(A/2)=-√((1-cosA)/2)cos(A/2)=√((1+cosA)/2)cos(A/2)=-√((1+cosA)/2)tan(A/2)=√((1-cosA)/((1+cosA))tan(A/2)=-√((1-cosA)/((1+cosA))cot(A/2)=√((1+cosA)/((1-cosA))cot(A/2)=-√((1+cosA)/((1-cosA))?和差化積2sinAcosB=sin(A+B)+sin(A-B)2cosAsinB=sin(A+B)-sin(A-B))2cosAcosB=cos(A+B)-sin(A-B)-2sinAsinB=cos(A+B)-cos(A-B)sinA+sinB=2sin((A+B)/2)cos((A-B)/2cosA+cosB=2cos((A+B)/2)sin((A-B)/2)tanA+tanB=sin(A+B)/cosAcosB某些數(shù)列前n項(xiàng)和1+2+3+4+5+6+7+8+9+…+n=n(n+1)/21+3+5+7+9+11+13+15+…+(2n-1)=n22+4+6+8+10+12+14+…+(2n)=n(n+1)51^2+2^2+3^2+4^2+5^2+6^2+7^2+8^2+…+n^2=n(n+1)(2n+1)/61^3+2^3+3^3+4^3+5^3+6^3+…n^3=n2(n+1)2/41*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3正弦定理a/sinA=b/sinB=c/sinC=2R注:其中R表示三角形的外接圓半徑余弦定理b^2=a^2+c^2-2accosB注:角B是邊a和邊c的夾角圓的標(biāo)準(zhǔn)方程(x-a)^2+(y-b)^2=^r2注:(a,b)是圓心坐標(biāo)圓的一般方程x^2+y^2+Dx+Ey+F=0注:D^2+E^2-4F>0拋物線標(biāo)準(zhǔn)方程y^2=2pxy^2=-2pxx^2=2pyx^2=-2py直棱柱側(cè)面積S=c*h斜棱柱側(cè)面積S=c'*h正棱錐側(cè)面積S=1/2c*h'正棱臺(tái)側(cè)面積S=1/2(c+c')h'圓臺(tái)側(cè)面積S=1/2(c+c')l=pi(R+r)l球的表面積S=4pi*r2圓柱側(cè)面積S=c*h=2pi*h圓錐側(cè)面積S=1/2*c*l=pi*r*l弧長(zhǎng)公式l=a*ra是圓心角的弧度數(shù)r>0扇形面積公式s=1/2*l*r錐體體積公式V=1/3*S*H圓錐體體積公式V=1/3*pi*r2h?斜棱柱體積V=S'L注:其中,S'是直截面面積,L是側(cè)棱長(zhǎng)柱體體積公式V=s*h圓柱體V=pi*r2h希望對(duì)你有幫助?。?!初中代數(shù)【實(shí)數(shù)的分類】【自然數(shù)】表示物體個(gè)數(shù)的1、2、3、4···等都稱為自然數(shù)【質(zhì)數(shù)與合數(shù)】一個(gè)大于1的整數(shù),如果除了它本身和1以外不能被其它正整數(shù)所整除,那么這個(gè)數(shù)稱為質(zhì)數(shù)。一個(gè)大于1的數(shù),如果除了它本身和1以外還能被其它正整數(shù)所整除,那么這個(gè)數(shù)知名人士為合數(shù),1既不是質(zhì)數(shù)又不是合數(shù)?!鞠喾磾?shù)】只有符號(hào)不同的兩個(gè)實(shí)數(shù),其中一個(gè)叫做另一個(gè)的相反數(shù)。零的相反數(shù)是零。【絕對(duì)值】一個(gè)正數(shù)的絕對(duì)值是它本身,一個(gè)負(fù)數(shù)絕對(duì)值是它的相反數(shù),零的絕對(duì)值為零。從數(shù)軸上看,一個(gè)實(shí)數(shù)的絕對(duì)值是表示這個(gè)數(shù)的點(diǎn)離開原點(diǎn)距離?!镜箶?shù)】1除以一個(gè)非零實(shí)數(shù)的商叫這個(gè)實(shí)數(shù)的倒數(shù)。零沒(méi)有倒數(shù)。【完全平方數(shù)】如果一個(gè)有理數(shù)a的平方等于有理數(shù)b,那么這個(gè)有理數(shù)b叫做完全平方數(shù)。【方根】如果一個(gè)數(shù)的n次方(n是大于1的整數(shù))等于a,這個(gè)數(shù)叫做a的n次方根?!鹃_方】求一數(shù)的方根的運(yùn)算叫做開方?!舅阈g(shù)根】正數(shù)a的正的n次方根叫做a的n次算術(shù)根,零的算術(shù)根是零,負(fù)數(shù)沒(méi)有算術(shù)根?!敬鷶?shù)式】用有限次運(yùn)算符號(hào)(加、減、乘、除、乘方、開方)把數(shù)或表示數(shù)的字母連結(jié)所得的式子,叫做代數(shù)式。【代數(shù)式的值】用數(shù)值代替代數(shù)式里的字母,計(jì)算后所得的結(jié)果,叫做當(dāng)這個(gè)字母取這個(gè)數(shù)值時(shí)的代數(shù)式的值?!敬鷶?shù)式的分類】【有理式】只含有加、減、乘、除和乘方運(yùn)算的代數(shù)式叫有理式【無(wú)理式】根號(hào)下含有字母的代數(shù)式叫做無(wú)理式【整式】沒(méi)有除法運(yùn)算或者雖有除法運(yùn)算而除式中不含字母的有理式叫整式【分式】除式中含字母的有理式叫分式初中數(shù)學(xué)如何學(xué)?一、掌握基礎(chǔ)知識(shí)1.系統(tǒng)學(xué)習(xí)課本知識(shí):初中數(shù)學(xué)的基礎(chǔ)知識(shí)包括算術(shù)、代數(shù)、幾何等,家長(zhǎng)要引導(dǎo)孩子系統(tǒng)地學(xué)習(xí)課
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 房地產(chǎn)活動(dòng)策劃 -2024夏季暑期躺夏趣浪造浪計(jì)劃音樂(lè)節(jié)活動(dòng)策劃方案
- 高效備考ACCESS考試的試題及答案指南
- 網(wǎng)絡(luò)技術(shù)職場(chǎng)競(jìng)爭(zhēng)力提升的策略試題及答案
- 化工廠場(chǎng)地地租賃合同
- 借款合同到期續(xù)借合同
- 環(huán)保設(shè)備生產(chǎn)與銷售聯(lián)合開發(fā)合同
- 行政組織理論的協(xié)同治理模式試題及答案
- 外墻面裝飾工程施工合同
- 工業(yè)自動(dòng)化控制理論實(shí)踐試題
- 開發(fā)商房子買賣合同
- 安徽省合肥八中2025屆高三最后一卷歷史試題及答案
- 計(jì)算機(jī)系統(tǒng)的故障與維護(hù)技巧試題及答案
- 領(lǐng)養(yǎng)貓合同協(xié)議書范本
- 2025年地理信息系統(tǒng)與應(yīng)用考試試題及答案
- 2025國(guó)家開放大學(xué)電大【信息管理概論】形考12答案 及 一體化終結(jié)性測(cè)試答案
- 河南省煙草專賣局(公司)筆試試題2024
- 中國(guó)文化概論知識(shí)試題及答案
- 煙臺(tái)購(gòu)房協(xié)議書
- 2025年中考生物模擬測(cè)試卷及答案
- 中國(guó)經(jīng)導(dǎo)管主動(dòng)脈瓣置換術(shù)臨床路徑專家共識(shí)(2024版)解讀
- 《無(wú)脊椎動(dòng)物的演化》課件
評(píng)論
0/150
提交評(píng)論