



下載本文檔
版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
學必求其心得,業必貴于專精學必求其心得,業必貴于專精學必求其心得,業必貴于專精2、3冪函數學習過程知識點1冪函數冪函數的一般形式為y=x。
對于a的取值為非零有理數,有必要分成幾種情況來討論各自的特性:
首先我們知道如果a=p/q,q和p都是整數,則x^(p/q)=q次根號(x的p次方),如果q是奇數,函數的定義域是R,如果q是偶數,函數的定義域是[0,+∞].當指數n是負整數時,設a=—k,則x=1/(x^k),顯然x≠0,函數的定義域是(-∞,0)∪(0,+∞)。因此可以看到x所受到的限制來源于兩點,一是有可能作為分母而不能是0,一是有可能在偶數次的根號下而不能為負數,那么我們就可以知道:
排除了為0與負數兩種可能,即對于x〉0,則a可以是任意實數;
排除了為0這種可能,即對于x〈0和x>0的所有實數,q不能是偶數;
排除了為負數這種可能,即對于x為大于且等于0的所有實數,a就不能是負數.
總結起來,就可以得到當a為不同的數值時,冪函數的定義域的不同情況如下:
如果a為任意實數,則函數的定義域為大于0的所有實數;
如果a為負數,則x肯定不能為0,不過這時函數的定義域還必須根據q的奇偶性來確定,即如果同時q為偶數,則x不能小于0,這時函數的定義域為大于0的所有實數;如果同時q為奇數,則函數的定義域為不等于0的所有實數。
在x大于0時,函數的值域總是大于0的實數。
在x小于0時,則只有同時q為奇數,函數的值域為非零的實數。而只有a為正數,0才進入函數的值域。
由于x大于0是對a的任意取值都有意義的。知識點2冪函數性質(1)所有的冪函數在(0,+∞)都有定義,并且圖象都過點(1,1);(2)時,冪函數的圖象通過原點,并且在區間上是增函數.特別地,當時,冪函數的圖象下凸;當時,冪函數的圖象上凸;(3)時,冪函數的圖象在區間上是減函數.在第一象限內,當從右邊趨向原點時,圖象在軸右方無限地逼近軸正半軸,當趨于時,圖象在軸上方無限地逼近軸正半軸。學習結論冪函數的一般形式:y=x冪函數的性質(1)所有的冪函數在(0,+∞)都有定義,并且圖象都過點(1,1);(2)時,冪函數的圖象通過原點,并且在區間上是增函數.特別地,當時,冪函數的圖象下凸;當時,冪函數的圖象上凸;(3)時,冪函數的圖象在區間上是減函數.在第一象限內,當從右邊趨向原點時,圖象在軸右方無限地逼近軸正半軸,當趨于時,圖象在軸上方無限地逼近軸正半軸。典型例題例題1。已知冪函數y=-2(m∈Z),m為何值時,圖象關于原點對稱,且不過原點?答案:±1解析:令m2—2=-1,∴m=±1,即m=±1滿足題意。例題2.討論y=—x3的單調性,并證明.證明:設x1、x2∈R,且x1〈x2。則f(x1)-f(x2)=x23—x13=(x2—x1)·(x12+x1x2+x22)=(x2-x1)[(x1+)2+x22]。∵x2—x1〉0.(x1+)2>0。x22≥0,故(x1+)2+x22>0,∴f(x1)-f(x2)>0,∴f(x1)>f(x2),∴f(x)為R上的減函數。例題3已知(0。713)m<(1。30。7)m,求m的取值范圍.答案:m〉0解析:∵0.71。3<0.70=1,1.
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 花畫藝術在寵物用品設計的趣味性考核試卷
- 理論與實踐相結合的公路工程復習策略試題及答案
- 數據中心網絡架構試題及答案
- 礦物加工廠質量管理與質量控制考核試卷
- 金屬工藝品的工藝研究與技術開發挑戰應對策略考核試卷
- 納米材料檢測技術考核試卷
- 嵌入式產品開發過程中的法律問題試題及答案
- 行政組織理論中的領導者角色與權責文化試題及答案
- 金冶煉廠的碳排放減少與碳足跡管理考核試卷
- 蜜餞制作與食品安全應急預案考核試卷
- 《中國老年高血壓管理指南(2023版)》解讀
- 七年級下冊《山地回憶》課件
- 浦東文員面試題及答案
- 腰椎病的康復護理
- 2024-2025學年度第二學期人教版八年級下冊物理暑假作業含答案第一天
- 2024年中國甘脲行業調查報告
- 浙江省2025年中考第二次模擬考試英語試題(含答案無聽力原文及音頻)
- 初創公司薪酬方案
- 2025年大學期末民法試題及答案
- 中級宏觀經濟學知到課后答案智慧樹章節測試答案2025年春浙江大學
- 《輔助生殖技術探究》課件
評論
0/150
提交評論