




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
江蘇省無錫市江陰市青陽第二中學2024屆八年級數學第二學期期末質量檢測模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每題4分,共48分)1.如圖,下面不能判定四邊形ABCD是平行四邊形的是()A.B.C.D.2.要使二次根式有意義,字母的取值范圍是()A.x≥ B.x≤ C.x> D.x<3.在ABCD中,∠A:∠B:∠C:∠D的值可以是()A.1:2:3:4 B.3:4:4:3 C.3:3:4:4 D.3:4:3:44.如圖,中,是斜邊上的高,,那么等于()A. B. C. D.5.近幾年,手機支付用戶規模增長迅速,據統計2015年手機支付用戶約為3.58億人,連續兩年增長后,2017年手機支付用戶達到約5.27億人.如果設這兩年手機支付用戶的年平均增長率為x,則根據題意可以列出方程為()A. B. C. D.6.下列命題是真命題的是()A.平行四邊形的對角線互相平分且相等B.任意多邊形的外角和均為360°C.鄰邊相等的四邊形是菱形D.兩個相似比為1:2的三角形對應邊上的高之比為1:47.如圖,正方形ABCD的四個頂點A、B、C、D正好分別在四條平行線l1、l2、l3、l4上.若從上到下每兩條平行線間的距離都是2cm,則正方形ABCD的面積為()A.4cm2 B.5cm2 C.20cm2 D.30cm28.下列運算正確的是()A.÷=2 B.2×3=6C.+= D.3﹣=39.若,則下列不等式中一定成立的有()A. B.C. D.10.某學校五個綠化小組一天植樹的棵數如下:,,,,,如果這組數據的平均數與眾數相等,那么這組數據的中位數是()A. B. C. D.11.將以此函數y=2x-1的圖像向上平移2個單位長度后,得到的直線解析式為()A.y=2x+2 B.y=2x+1 C.y=2x+3 D.y=2x-512.如圖,四邊形和四邊形都是正方形,反比例函數在第一象限的圖象經過點,若兩正方形的面積差為12,則的值為A.12 B.6 C. D.8二、填空題(每題4分,共24分)13.若直線與坐標軸所圍成的三角形的面積為6,則k的值為______.14.一個多邊形的各內角都相等,且內外角之差的絕對值為60°,則邊數為__________.15.如圖,在平行四邊形中,度,,,則______.16.在△ABC中,∠C=90°,若b=7,c=9,則a=_____.17.如圖將△ABC沿BC平移得△DCE,連AD,R是DE上的一點,且DR:RE=1:2,BR分別與AC,CD相交于點P,Q,則BP:PQ:QR=__.18.把二次函數y=-2x2-4x-1的圖象向上平移3個單位長度,再向右平移4個單位長度,則兩次平移后的圖象的解析式是_____________;三、解答題(共78分)19.(8分)已知如圖,反比例函數的圖象與一次函數的圖象交于點,點.(1)求,的值;(2)求的面積;(3)直接寫出時的取值范圍.20.(8分)如圖,在?ABCD中,點E、F在BD上,且BF=DE.(1)寫出圖中所有你認為全等的三角形;(2)延長AE交BC的延長線于G,延長CF交DA的延長線于H(請補全圖形),證明四邊形AGCH是平行四邊形.21.(8分)已知點P(2m+4,m-1),請分別根據下列條件,求出點P的坐標.(1)點P在x軸上;(2)點P的縱坐標比橫坐標大3;(3)點P在過點A(2,-4)且與y軸平行的直線上.22.(10分)如圖,每個小正方形的邊長都為1,四邊形ABCD的頂點都在小正方形的頂點上.(1)求四邊形ABCD的面積;(2)∠BCD是直角嗎?說明理由.23.(10分)如圖,在菱形ABCD中,∠BAD=60°,AC與BD交于點O,E為CD延長線上的一點,且CD=DE,連接BE分別交AC、AD于點F、G,連接OG,則下列結論中一定成立的是()①OG=AB;②與△EGD全等的三角形共有5個;③S四邊形ODGF>S△ABF;④由點A、B、D、E構成的四邊形是菱形.A.1個 B.2個 C.3個 D.4個24.(10分)某歡樂谷為回饋廣大谷迷,在暑假期間推出學生個人門票優惠價,各票價如下:票價種類
(A)學生夜場票
(B)學生日通票
(C)節假日通票
單價(元)
80
120
150
某慈善單位欲購買三種類型的票共100張獎勵品學兼優的留守學生,其中購買的B種票數是A種票數的3倍還多7張,C種票y張.(1)直接寫出y與x之間的函數關系式;(2)設購票總費用為w元,求w(元)與x(張)之間的函數關系式;(3)為方便學生游玩,計劃購買的學生夜場票不低于20張,且每種票至少購買5張,則有幾種購票方案?并指出哪種方案費用最少.25.(12分)在某旅游景區上山的一條小路上,有一些斷斷續續的臺階,下圖是其中的甲、乙兩段臺階的示意圖(圖中的數字表示每一級臺階的高度,單位cm).已知數據15、16、16、14、14、15的方差S甲2=,數據11、15、18、17、10、19的方差S乙2=.請你用學過的統計知識(平均數、中位數、方差和極差)通過計算,回答下列問題:(1)兩段臺階路有哪些相同點和不同點?(2)哪段臺階路走起來更舒服?為什么?(3)為方便游客行走,需要重新整修上山的小路.對于這兩段臺階路,在臺階數不變的情況下,請你提出合理的整修建議.26.如圖①,正方形的邊長為,動點從點出發,在正方形的邊上沿運動,設運動的時間為,點移動的路程為,與的函數圖象如圖②,請回答下列問題:(1)點在上運動的時間為,在上運動的速度為(2)設的面積為,求當點在上運動時,與之間的函數解析式;(3)①下列圖表示的面積與時間之間的函數圖象是.②當時,的面積為
參考答案一、選擇題(每題4分,共48分)1、C【解題分析】
根據平行四邊形的判定:①兩組對邊分別平行的四邊形是平行四邊形;②兩組對邊分別相等的四邊形是平行四邊形;③兩組對角分別相等的四邊形是平行四邊形;④對角線互相平分的四邊形是平行四邊形;⑤一組對邊平行且相等的四邊形是平行四邊形判斷即可.【題目詳解】根據平行四邊形的判定,A、B、D均符合是平行四邊形的條件,C則不能判定是平行四邊形.故選C.【題目點撥】此題主要考查了學生對平行四邊形的判定的掌握情況.對于判定定理:“一組對邊平行且相等的四邊形是平行四邊形.”應用時要注意必須是“一組”,而“一組對邊平行且另一組對邊相等”的四邊形不一定是平行四邊形.2、B【解題分析】
二次根式的被開方數應為非負數,列不等式求解.【題目詳解】由題意得:1-2x≥0,解得x≤,故選B.【題目點撥】主要考查了二次根式的意義和性質.概念:式子(a≥0)叫二次根式.性質:二次根式中的被開方數必須是非負數,否則二次根式無意義.3、D【解題分析】分析:根據平行四邊形的性質:平行四邊形的兩組對角分別相等即可判斷.詳解:根據平行四邊形的兩組對角分別相等.可知D正確.故選D.點睛:本題考查了平行四邊形的性質,平行四邊形的性質有:平行四邊形對邊平行且相等;平行四邊形對角相等,鄰角互補;平行四邊形對角線互相平分.4、C【解題分析】
根據同角的余角相等證明∠DCB=∠CAD,利用兩角對應相等證明△ADC∽△CDB,列比例式可得結論.【題目詳解】解:∵∠ACB=90°,
∴∠ACD+∠DCB=90°,
∵CD是高,
∴∠ADC=∠CDB=90°,
∴∠ACD+∠CAD=90°,
∴∠DCB=∠CAD,
∴△ADC∽△CDB,∴CD2=AD?BD,
∵AD=9,BD=4,∴CD=6故選:C.【題目點撥】本題考查了相似三角形的性質和判定,熟練掌握相似三角形的判定方法是關鍵.5、C【解題分析】
如果設這兩年手機支付用戶的年平均增長率為,那么2016年手機支付用戶約為億人,2017年手機支付用戶約為億人,而2017年手機支付用戶達到約億人,根據2017年手機支付用戶的人數不變,列出方程.【題目詳解】設這兩年手機支付用戶的年平均增長率為,依題意得:.故選:.【題目點撥】本題考查的是由實際問題抽象出一元二次方程-平均增長率問題.解決這類問題所用的等量關系一般是:.6、B【解題分析】
利用平行四邊形的性質、多邊形的外角和、菱形的判定及相似三角形的性質判斷后即可確定正確的選項.【題目詳解】解:A、平行四邊形的對角線互相平分但不一定相等,故錯誤,是假命題;B、任意多邊形的外角和均為360°,正確,是真命題;C、鄰邊相等的平行四邊形是菱形,故錯誤,是假命題;D、兩個相似比為1:2的三角形對應邊上的高之比為1:2,故錯誤,是假命題,故選:B.【題目點撥】本題考查了命題的判斷,涉及平行四邊形的性質、多邊形的外角和、菱形的判定及相似三角形的性質等知識點,掌握基本知識點是解題的關鍵.7、C【解題分析】
過D作直線EF與平行線垂直,交l1與點E,交l4于點F.再證明,得到,故可求的CD的長,進而求出正方形的面積.【題目詳解】過D作直線EF與l2垂直,交l1與點E,交l4于點F.,即四邊形ABCD為正方形在和中即正方形的面積為20故選C.【題目點撥】本題主要考查平行線的性質,關鍵在于利用三角形全等求正方形的邊長.8、A【解題分析】
根據二次根式的除法法則對A進行判斷;根據二次根式的乘法法則對B進行判斷;根據二次根式的加減法對C、D進行判斷.【題目詳解】解:A、原式==2,所以A選項正確;B、原式=6×2=12,所以B選項錯誤;C、與不能合并,所以C選項錯誤;D、原式=2,所以D選項錯誤.故選:A.【題目點撥】本題考查了二次根式的混合運算:先把各二次根式化簡為最簡二次根式,然后進行二次根式的乘除運算,再合并即可.9、C【解題分析】
根據不等式的性質,兩邊同時除以5進行計算,判斷出結論成立的是哪個即可.【題目詳解】解:∵5x>-5y,
∴x>-y,
∴x+y>0
故選:C.【題目點撥】此題主要考查了不等式的性質,要熟練掌握,特別要注意在不等式兩邊同乘以(或除以)同一個數時,不僅要考慮這個數不等于0,而且必須先確定這個數是正數還是負數,如果是負數,不等號的方向必須改變.10、C【解題分析】試題分析:根據數據的特點可知眾數為10,因此可得,解得x=10,因此這五個數可按從小到大排列為8、10、10、10、12,因此中位數為10.故選C考點:眾數,中位數,平均數11、B【解題分析】
直接根據一次函數圖象與幾何變換的有關結論求解.【題目詳解】解:直線y=2x-1向上平移2個單位后得到的直線解析式為y=2x-1+2,即y=2x+1,
故選B.【題目點撥】本題考查了一次函數圖象與幾何變換:一次函數y=kx+b(k、b為常數,k≠0)的圖象為直線,當直線平移時k不變,當向上平移m個單位,則平移后直線的解析式為y=kx+b+m.12、A【解題分析】
設正方形OABC、BDEF的邊長分別為a和b,則可表示出D(a,a-b),F(a+b,a),根據反比例函數圖象上點的坐標特征得到E(a+b,),由于點E與點D的縱坐標相同,所以=a-b,則a2-b2=k,然后利用正方形的面積公式易得k=1.【題目詳解】解:設正方形OABC、BDEF的邊長分別為a和b,則D(a,a-b),F(a+b,a),所以E(a+b,),所以=a-b,∴(a+b)(a-b)=k,∴a2-b2=k,∵兩正方形的面積差為1,∴k=1.故選:A.【題目點撥】本題考查了反比例函數比例系數k的幾何意義:在反比例函數y=圖象中任取一點,過這一個點向x軸和y軸分別作垂線,與坐標軸圍成的矩形的面積是定值|k|.也考查了正方形的性質.二、填空題(每題4分,共24分)13、±【解題分析】
由直線的性質可知,當x=0時,可知函數與y軸的交點為(0,3),設圖象與x軸的交點到原點的距離為a,根據三角形的面積為6,求出a的值,從而求出k的值.【題目詳解】當x=0時,可知函數與y軸的交點為(0,3),設圖象與x軸的交點到原點的距離為a,則×3a=6,解得:a=4,則函數與x軸的交點為(4,0)或(-4,0),把(4,0)代入y=kx+3得,4k+3=0,k=-,把(-4,0)代入y=kx+3得,-4k+3=0,k=,故答案為:±.【題目點撥】本題考查了一次函數圖象上點的坐標特征,直線與坐標軸的交點問題,解答時要注意進行分類討論.14、3或1【解題分析】
分別表示多邊形的每一個內角及與內角相鄰的外角,根據題意列方程求解即可.【題目詳解】解:因為:多邊形的內角和為,又每個內角都相等,所以:多邊形的每個內角為,而多邊形的外角和為,由多邊形的每個內角都相等,則每個外角也都相等,所以多邊形的每個外角為,所以,所以,所以或解得:,經檢驗符合題意.故答案為:3或1.【題目點撥】本題考查的是多邊形的內角和與外角和,多邊形的一個內角與相鄰的外角互補,掌握相關的性質是解題的關鍵.15、【解題分析】
依據平行四邊形的對角互相平分可得AO=3cm,在Rt△ABO中利用勾股定理可求AB長.【題目詳解】∵四邊形ABCD是平行四邊形,∴AO=AC=3cm.在Rt△ABO中,OB=6cm,AO=3cm,利用勾股定可得AB=.故答案為3.【題目點撥】本題主要考查了平行四邊形的性質、勾股定理,利用平行四邊形的對角線互相平分求解三角形中某些線段的長度是解決這類問題通常的方法.16、4【解題分析】
利用勾股定理:a2+b2=c2,直接解答即可【題目詳解】∵∠C=90°∴a2+b2=c2∵b=7,c=9,∴a===4故答案為4【題目點撥】本題考查了勾股定理,對應值代入是解決問題的關鍵17、2:1:1【解題分析】
根據平移的性質得到AC∥DE,BC=CE,得到△BPC∽△BRE,根據相似三角形的性質得到PC=DR,根據△PQC∽△RQD,得到PQ=QR,即可求解.【題目詳解】由平移的性質可知,AC∥DE,BC=CE,
∴△BPC∽△BRE,
∴,
∴PC=RE,BP=PR,
∵DR:RE=1:2,
∴PC=DR,
∵AC∥DE,
∴△PQC∽△RQD,
∴=1,
∴PQ=QR,
∴BP:PQ:QR=2:1:1,
故答案為2:1:1.【題目點撥】本題考查了相似三角形的判定和性質,平移的性質,掌握相似三角形的判定定理和性質定理是解題的關鍵.18、y=-2x2+12x-2【解題分析】
先把拋物線化為頂點式,再按照“左加右減,上加下減”的規律,即可求出平移后的函數表達式.【題目詳解】解:把拋物線的表達式化為頂點坐標式,y=-2(x+1)2+1.
按照“左加右減,上加下減”的規律,向上平移3個單位,再向右平移4個單位,得y=-2(x+1-4)2+1+3=-2(x-3)2+4=-2x2+12x-2.
故答案為:y=-2x2+12x-2.【題目點撥】本題考查二次函數圖象與幾何變換,要求熟練掌握平移的規律:左加右減,上加下減.同時考查了學生將一般式轉化頂點式的能力.三、解答題(共78分)19、(1)m=-2,n=2;(2);(3)的取值范圍是x≤-2或0<x≤1.【解題分析】
(1)將A,B兩點分別代入一次函數解析式,即可求出兩點坐標.(2)將△AOB分割為S△AOB=S△BOC+S△AOC,列式求出即可.(3)根據函數的圖像和交點坐標即可求得.【題目詳解】(1)把A點坐標(1,n)代入y2=x+3,得n=2;把B點坐標(m,-1)代入y2=x+3,得m=-2.∴m=-2,n=2.(2)如圖,當y=0時,x+3=0,∴C(-3,0),∴S△AOB=S△BOC+S△AOC=×3×1+×3×2=.(3)當時的取值范圍是x≤-2或0<x≤1.【題目點撥】本題考查了一次函數和反比例函數的交點問題,涉及三角形的面積計算,一次函數的圖像等知識點.20、(1)△ABE≌△CDF;△AED≌△CFB;△ABD≌△CDB;(2)詳見解析【解題分析】
(1)因為ABCD是平行四邊形,AD∥BC,因此∠ADE=∠CBF,又知DE=BF,D=BC那么構成了三角形ADE和CBF全等的條件(SAS)因此△AED≌△CFB.同理可得出△ABE≌△CDF,△ABD≌△CDB.(2)要證明四邊形AGCH是個平行四邊形,已知的條件有AB∥CD,只要證得AG∥CH即可得出上述結論.那么就需要證明∠AEB=∠DFC,也就是證明△ABE≌△CDF,根據AB∥CD.∴∠ABD=∠CDB.這兩個三角形中已知的條件就有AB=CD,BE=DF(BE=DF+EF=DE+EF=DF),又由上面得出的對應角相等,那么兩三角形就全等了(SAS).【題目詳解】(1)解:△ABE≌△CDF;△AED≌△CFB;△ABD≌△CDB;(2)證明:在△ADE和△CBF中,AD=CB,∠ADE=∠CBF,DE=BF,∴△ADE≌△CBF,∴∠AED=∠CFB.∵∠FEG=∠AED=∠CFB=∠EFH,∴AG‖HC,而且,AH‖GC,∴四邊形AGCH是平行四邊形【題目點撥】本題考查了全等三角形的判定,平行四邊形的性質和判定等知識點,本題中公共全等三角形來得出線段和角相等是解題的關鍵.21、(1)(6,0);(2)(-12,-9);(3)(2,-2)【解題分析】試題分析:(1)讓縱坐標為0求得m的值,代入點P的坐標即可求解;(2)讓縱坐標-橫坐標=3得m的值,代入點P的坐標即可求解;(3)讓橫坐標為2求得m的值,代入點P的坐標即可求解.試題解析:(1))點P在x軸上,故縱坐標為0,所以m-1=0,m=1,點P的坐標(6,0);(2)因為點P的縱坐標比橫坐標大3,故(m-1)-(2m+4)=3,m=-8,點P的坐標(-12,-9);(3)點P在過A(2,-4)點,且與y軸平行的直線上,所以點P橫坐標與A(2,-4)相同,即2m+4=2,m=-1,點P的坐標(2,-2)22、(1)四邊形ABCD的面積=14;(2)是.理由見解析.【解題分析】
(1)根據四邊形ABCD的面積=S矩形AEFH﹣S△AEB﹣S△BFC﹣S△CGD﹣S梯形AHGD即可得出結論;(2)先根據銳角三角函數的定義判斷出∠FBC=∠DCG,再根據直角三角形的性質可得出∠BCF+∠DCG=90°,故可得出結論.【題目詳解】(1)∵四邊形ABCD的面積=S矩形AEFH﹣S△AEB﹣S△BFC﹣S△CGD﹣S梯形AHGD=5×51×52×41×2(1+5)×1=25=14;(2)是.理由如下:∵tan∠FBC,tan∠DCG,∴∠FBC=∠DCG.∵∠FBC+∠BCF=∠DCG+∠CDG=90°,∴∠BCF+∠DCG=90°,∴∠BCD是直角.【題目點撥】本題考查了分割法求面積和銳角三角函數的定義,熟知直角三角形的性質是解答此題的關鍵.23、B【解題分析】
由AAS證明△ABG≌△DEG,得出AG=DG,證出OG是△ACD的中位線,得出OG=CD=AB,①正確;先證明四邊形ABDE是平行四邊形,證出△ABD、△BCD是等邊三角形,得出AB=BD=AD,因此OD=AG,得出四邊形ABDE是菱形,④正確;由菱形的性質得得出△ABG≌△BDG≌△DEG,由SAS證明△ABG≌△DCO,得出△ABO≌△BCO≌△CDO≌△AOD≌△ABG≌△BDG≌△DEG,得出②不正確;證出OG是△ABD的中位線,得出OG∥AB,OG=AB,得出△GOD∽△ABD,△ABF∽△OGF,由相似三角形的性質和面積關系得出S四邊形ODGF=S△ABF;③不正確;即可得出結果.【題目詳解】∵四邊形ABCD是菱形,∴AB=BC=CD=DA,AB∥CD,OA=OC,OB=OD,AC⊥BD,∴∠BAG=∠EDG,△ABO≌△BCO≌△CDO≌△AOD,∵CD=DE,∴AB=DE,在△ABG和△DEG中,,∴△ABG≌△DEG(AAS),∴AG=DG,∴OG是△ACD的中位線,∴OG=CD=AB,①正確;∵AB∥CE,AB=DE,∴四邊形ABDE是平行四邊形,∵∠BCD=∠BAD=60°,∴△ABD、△BCD是等邊三角形,∴AB=BD=AD,∠ODC=60°,∴OD=AG,四邊形ABDE是菱形,④正確;∴AD⊥BE,由菱形的性質得:△ABG≌△BDG≌△DEG,在△ABG和△DCO中,,∴△ABG≌△DCO(SAS),∴△ABO≌△BCO≌△CDO≌△AOD≌△ABG≌△BDG≌△DEG,②不正確;∵OB=OD,AG=DG,∴OG是△ABD的中位線,∴OG∥AB,OG=AB,∴△GOD∽△ABD,△ABF∽△OGF,∴△GOD的面積=△ABD的面積,△ABF的面積=△OGF的面積的4倍,AF:OF=2:1,∴△AFG的面積=△OGF的面積的2倍,又∵△GOD的面積=△AOG的面積=△BOG的面積,∴S四邊形ODGF=S△ABF;③不正確;正確的是①④.故選B.【題目點撥】本題考查了菱形的判定與性質、全等三角形的判定與性質、等邊三角形的判定與性質、三角形中位線定理、相似三角形的判定與性質等知識;本題綜合性強,難度較大.24、(1)y=93-4x;(2)w=-160x+14790;(3)共有3種購票方案,當A種票為22張,B種票73張,C種票為5張時費用最少,最少費用為11270元.【解題分析】試題分析:(1)根據總票數為100得到x+3x+7+y=100,然后用x表示y即可;(2)利用表中數據把三種票的費用加起來得到w=80x+120(3x+7)+150(93-4x),然后整理即可;(3)根據題意得到,再解不等式組且確定不等式組的整數解為20、21、22,于是得到共有3種購票方案,然后根據一次函數的性質求w的最小值.試題解析:解:(1)x+3x+7+y=100,所以y=93-4x;(2)w=80x+120(3x+7)+150(93-4x)=-160x+14790;(3)依題意得,解得20≤x≤22,因為整數x為20、21、22,所以共有3種購票方案(A、20,B、67,C、13;A、21,B、70,C、9;A、22,B、73,C、5);而w=-160x+14790,因為k=-160<0,所以y隨x的增大而減小,所以當x=22時,y最小=22×(-160)+14790=11270,即當A種票為22張,B種票73張,C種票為5張時費用最少,最少費
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 職業學院發展黨員資料袋
- 河南省漯河市本年度(2025)小學一年級數學統編版專題練習(下學期)試卷及答案
- 2025-2030年中國數字告示數字標牌行業應用前景及投資發展研究報告
- 朱自清背影閱讀教學設計
- 觀潮教案八年級上
- 一級建筑實務模擬習題(附答案)
- 新能源汽車故障診斷與排除模擬練習題+答案
- 保健按摩師初級模擬練習題(含參考答案)
- 山西省長治市潞州區長治市第二中學2025屆高三最后一卷英語試卷含答案
- 2025年安徽省阜陽市太和縣中考二模化學試題(原卷版+解析版)
- 《小學綜合實踐活動專題》課程教學大綱
- 化妝品產品安全及質量風險評估報告
- 輿論學教程PPT整本書課件完整版電子教案全套課件最全教學教程ppt(最新)
- TRIZ試題庫詳細版
- 水資源論證工作大綱
- MTM-1基本方法
- ppt精選模板:熱烈歡迎領導蒞臨指導工作PPT課件
- 無機材料科學基礎第六章
- 東南大學論文模板v1.1
- 神經系統體格檢查-PPT課件
- 賽英公司FOD監測雷達系統
評論
0/150
提交評論