




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
貴州省遵義市省級示范高中2023-2024學年高三第一次調研測試數學試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.將函數向左平移個單位,得到的圖象,則滿足()A.圖象關于點對稱,在區間上為增函數B.函數最大值為2,圖象關于點對稱C.圖象關于直線對稱,在上的最小值為1D.最小正周期為,在有兩個根2.已知復數滿足,其中是虛數單位,則復數在復平面中對應的點到原點的距離為()A. B. C. D.3.已知函數(,且)在區間上的值域為,則()A. B. C.或 D.或44.函數的部分圖象大致為()A. B.C. D.5.已知向量,,設函數,則下列關于函數的性質的描述正確的是A.關于直線對稱 B.關于點對稱C.周期為 D.在上是增函數6.過橢圓的左焦點的直線過的上頂點,且與橢圓相交于另一點,點在軸上的射影為,若,是坐標原點,則橢圓的離心率為()A. B. C. D.7.已知函數,若,且,則的取值范圍為()A. B. C. D.8.已知拋物線的焦點為,過點的直線與拋物線交于,兩點(設點位于第一象限),過點,分別作拋物線的準線的垂線,垂足分別為點,,拋物線的準線交軸于點,若,則直線的斜率為A.1 B. C. D.9.甲、乙、丙三人參加某公司的面試,最終只有一人能夠被該公司錄用,得到面試結果以后甲說:丙被錄用了;乙說:甲被錄用了;丙說:我沒被錄用.若這三人中僅有一人說法錯誤,則下列結論正確的是()A.丙被錄用了 B.乙被錄用了 C.甲被錄用了 D.無法確定誰被錄用了10.已知定義在上的偶函數滿足,且在區間上是減函數,令,則的大小關系為()A. B.C. D.11.我國宋代數學家秦九韶(1202-1261)在《數書九章》(1247)一書中提出“三斜求積術”,即:以少廣求之,以小斜冪并大斜冪減中斜冪,余半之,自乘于上;以小斜冪乘大斜冪減上,余四約之,為實;一為從隅,開平方得積.其實質是根據三角形的三邊長,,求三角形面積,即.若的面積,,,則等于()A. B. C.或 D.或12.設復數滿足(為虛數單位),則復數的共軛復數在復平面內對應的點位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限二、填空題:本題共4小題,每小題5分,共20分。13.(5分)在平面直角坐標系中,過點作傾斜角為的直線,已知直線與圓相交于兩點,則弦的長等于____________.14.在平面直角坐標系中,雙曲線的右準線與漸近線的交點在拋物線上,則實數的值為________.15.不等式對于定義域內的任意恒成立,則的取值范圍為__________.16.已知拋物線C:y2=4x的焦點為F,準線為l,P為C上一點,PQ垂直l于點Q,M,N分別為PQ,PF的中點,MN與x軸相交于點R,若∠NRF=60°,則|FR|等于_____.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)某市為了鼓勵市民節約用電,實行“階梯式”電價,將該市每戶居民的月用電量劃分為三檔,月用電量不超過度的部分按元/度收費,超過度但不超過度的部分按元/度收費,超過度的部分按元/度收費.(I)求某戶居民用電費用(單位:元)關于月用電量(單位:度)的函數解析式;(Ⅱ)為了了解居民的用電情況,通過抽樣,獲得了今年1月份戶居民每戶的用電量,統計分析后得到如圖所示的頻率分布直方圖,若這戶居民中,今年1月份用電費用不超過元的占,求,的值;(Ⅲ)在滿足(Ⅱ)的條件下,若以這戶居民用電量的頻率代替該月全市居民用戶用電量的概率,且同組中的數據用該組區間的中點代替,記為該居民用戶1月份的用電費用,求的分布列和數學期望.18.(12分)如圖,已知四棱錐,底面為邊長為2的菱形,平面,,是的中點,.(Ⅰ)證明:;(Ⅱ)若為上的動點,求與平面所成最大角的正切值.19.(12分)已知頂點是坐標原點的拋物線的焦點在軸正半軸上,圓心在直線上的圓與軸相切,且關于點對稱.(1)求和的標準方程;(2)過點的直線與交于,與交于,求證:.20.(12分)如圖,在直三棱柱中,分別是中點,且,.求證:平面;求點到平面的距離.21.(12分)已知.(1)求的單調區間;(2)當時,求證:對于,恒成立;(3)若存在,使得當時,恒有成立,試求的取值范圍.22.(10分)如圖,在三棱柱中,、、分別是、、的中點.(1)證明:平面;(2)若底面是正三角形,,在底面的投影為,求到平面的距離.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】
由輔助角公式化簡三角函數式,結合三角函數圖象平移變換即可求得的解析式,結合正弦函數的圖象與性質即可判斷各選項.【詳解】函數,則,將向左平移個單位,可得,由正弦函數的性質可知,的對稱中心滿足,解得,所以A、B選項中的對稱中心錯誤;對于C,的對稱軸滿足,解得,所以圖象關于直線對稱;當時,,由正弦函數性質可知,所以在上的最小值為1,所以C正確;對于D,最小正周期為,當,,由正弦函數的圖象與性質可知,時僅有一個解為,所以D錯誤;綜上可知,正確的為C,故選:C.【點睛】本題考查了三角函數式的化簡,三角函數圖象平移變換,正弦函數圖象與性質的綜合應用,屬于中檔題.2、B【解析】
利用復數的除法運算化簡z,復數在復平面中對應的點到原點的距離為利用模長公式即得解.【詳解】由題意知復數在復平面中對應的點到原點的距離為故選:B【點睛】本題考查了復數的除法運算,模長公式和幾何意義,考查了學生概念理解,數學運算,數形結合的能力,屬于基礎題.3、C【解析】
對a進行分類討論,結合指數函數的單調性及值域求解.【詳解】分析知,.討論:當時,,所以,,所以;當時,,所以,,所以.綜上,或,故選C.【點睛】本題主要考查指數函數的值域問題,指數函數的值域一般是利用單調性求解,側重考查數學運算和數學抽象的核心素養.4、B【解析】
圖像分析采用排除法,利用奇偶性判斷函數為奇函數,再利用特值確定函數的正負情況。【詳解】,故奇函數,四個圖像均符合。當時,,,排除C、D當時,,,排除A。故選B。【點睛】圖像分析采用排除法,一般可供判斷的主要有:奇偶性、周期性、單調性、及特殊值。5、D【解析】
當時,,∴f(x)不關于直線對稱;當時,,∴f(x)關于點對稱;f(x)得周期,當時,,∴f(x)在上是增函數.本題選擇D選項.6、D【解析】
求得點的坐標,由,得出,利用向量的坐標運算得出點的坐標,代入橢圓的方程,可得出關于、、的齊次等式,進而可求得橢圓的離心率.【詳解】由題意可得、.由,得,則,即.而,所以,所以點.因為點在橢圓上,則,整理可得,所以,所以.即橢圓的離心率為故選:D.【點睛】本題考查橢圓離心率的求解,解答的關鍵就是要得出、、的齊次等式,充分利用點在橢圓上這一條件,圍繞求點的坐標來求解,考查計算能力,屬于中等題.7、A【解析】分析:作出函數的圖象,利用消元法轉化為關于的函數,構造函數求得函數的導數,利用導數研究函數的單調性與最值,即可得到結論.詳解:作出函數的圖象,如圖所示,若,且,則當時,得,即,則滿足,則,即,則,設,則,當,解得,當,解得,當時,函數取得最小值,當時,;當時,,所以,即的取值范圍是,故選A.點睛:本題主要考查了分段函數的應用,構造新函數,求解新函數的導數,利用導數研究新函數的單調性和最值是解答本題的關鍵,著重考查了轉化與化歸的數學思想方法,以及分析問題和解答問題的能力,試題有一定的難度,屬于中檔試題.8、C【解析】
根據拋物線定義,可得,,又,所以,所以,設,則,則,所以,所以直線的斜率.故選C.9、C【解析】
假設若甲被錄用了,若乙被錄用了,若丙被錄用了,再逐一判斷即可.【詳解】解:若甲被錄用了,則甲的說法錯誤,乙,丙的說法正確,滿足題意,若乙被錄用了,則甲、乙的說法錯誤,丙的說法正確,不符合題意,若丙被錄用了,則乙、丙的說法錯誤,甲的說法正確,不符合題意,綜上可得甲被錄用了,故選:C.【點睛】本題考查了邏輯推理能力,屬基礎題.10、C【解析】
可設,根據在上為偶函數及便可得到:,可設,,且,根據在上是減函數便可得出,從而得出在上單調遞增,再根據對數的運算得到、、的大小關系,從而得到的大小關系.【詳解】解:因為,即,又,設,根據條件,,;若,,且,則:;在上是減函數;;;在上是增函數;所以,故選:C【點睛】考查偶函數的定義,減函數及增函數的定義,根據單調性定義判斷一個函數單調性的方法和過程:設,通過條件比較與,函數的單調性的應用,屬于中檔題.11、C【解析】
將,,,代入,解得,再分類討論,利用余弦弦定理求,再用平方關系求解.【詳解】已知,,,代入,得,即,解得,當時,由余弦弦定理得:,.當時,由余弦弦定理得:,.故選:C【點睛】本題主要考查余弦定理和平方關系,還考查了對數學史的理解能力,屬于基礎題.12、D【解析】
先把變形為,然后利用復數代數形式的乘除運算化簡,求出,得到其坐標可得答案.【詳解】解:由,得,所以,其在復平面內對應的點為,在第四象限故選:D【點睛】此題考查了復數代數形式的乘除運算,考查了復數的代數表示法及其幾何意義,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
方法一:依題意,知直線的方程為,代入圓的方程化簡得,解得或,從而得或,則.方法二:依題意,知直線的方程為,代入圓的方程化簡得,設,則,故.方法三:將圓的方程配方得,其半徑,圓心到直線的距離,則.14、【解析】
求出雙曲線的右準線與漸近線的交點坐標,并將該交點代入拋物線的方程,即可求出實數的方程.【詳解】雙曲線的半焦距為,則雙曲線的右準線方程為,漸近線方程為,所以,該雙曲線右準線與漸近線的交點為.由題意得,解得.故答案為:.【點睛】本題考查利用拋物線上的點求參數,涉及到雙曲線的準線與漸近線方程的應用,考查計算能力,屬于中等題.15、【解析】
根據題意,分離參數,轉化為只對于內的任意恒成立,令,則只需在定義域內即可,利用放縮法,得出,化簡后得出,即可得出的取值范圍.【詳解】解:已知對于定義域內的任意恒成立,即對于內的任意恒成立,令,則只需在定義域內即可,,,當時取等號,由可知,,當時取等號,,當有解時,令,則,在上單調遞增,又,,使得,,則,所以的取值范圍為.故答案為:.【點睛】本題考查利用導數研究函數單調性和最值,解決恒成立問題求參數值,涉及分離參數法和放縮法,考查轉化能力和計算能力.16、2【解析】
由題意知:,,,.由∠NRF=60°,可得為等邊三角形,MF⊥PQ,可得F為HR的中點,即求.【詳解】不妨設點P在第一象限,如圖所示,連接MF,QF.∵拋物線C:y2=4x的焦點為F,準線為l,P為C上一點∴,.∵M,N分別為PQ,PF的中點,∴,∵PQ垂直l于點Q,∴PQ//OR,∵,∠NRF=60°,∴為等邊三角形,∴MF⊥PQ,易知四邊形和四邊形都是平行四邊形,∴F為HR的中點,∴,故答案為:2.【點睛】本題主要考查拋物線的定義,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2),;(3)見解析.【解析】試題分析:(1)根據題意分段表示出函數解析式;(2)將代入(1)中函數解析式可得,即,根據頻率分布直方圖可分別得到關于的方程,即可得;(3)取每段中點值作為代表的用電量,分別算出對應的費用值,對應得出每組電費的概率,即可得到的概率分布列,然后求出的期望.試題解析:(1)當時,;當當時,;當當時,,所以與之間的函數解析式為.(2)由(1)可知,當時,,則,結合頻率分布直方圖可知,∴,(3)由題意可知可取50,150,250,350,450,550,當時,,∴,當時,,∴,當時,,∴,當時,,∴,當時,,∴,當時,,∴,故的概率分布列為25751402203104100.10.20.30.20.150.05所以隨機變量的數學期望18、(Ⅰ)見解析;(Ⅱ).【解析】試題分析:(Ⅰ)由底面為邊長為2的菱形,平面,,易證平面,可得;(Ⅱ)連結,由(Ⅰ)易知為與平面所成的角,在中,可求得.試題解析:(Ⅰ)∵四邊形為菱形,且,∴為正三角形,又為中點,∴;又,∴,∵平面,又平面,∴,∴平面,又平面,∴;(Ⅱ)連結,由(Ⅰ)知平面,∴為與平面所成的角,在中,,最大當且僅當最短,即時最大,依題意,此時,在中,,∴,,∴與平面所成最大角的正切值為.考點:1.線線垂直證明;2.求線面角.19、(1),;(2)證明見解析.【解析】分析:(1)設的標準方程為,由題意可設.結合中點坐標公式計算可得的標準方程為.半徑,則的標準方程為.(2)設的斜率為,則其方程為,由弦長公式可得.聯立直線與拋物線的方程有.設,利用韋達定理結合弦長公式可得.則.即.詳解:(1)設的標準方程為,則.已知在直線上,故可設.因為關于對稱,所以解得所以的標準方程為.因為與軸相切,故半徑,所以的標準方程為.(2)設的斜率為,那么其方程為,則到的距離,所以.由消去并整理得:.設,則,那么.所以.所以,即.點睛:(1)直線與拋物線的位置關系和直線與橢圓、雙曲線的位置關系類似,一般要用到根與系數的關系;(2)有關直線與拋物線的弦長問題,要注意直線是否過拋物線的焦點,若過拋物線的焦點,可直接使用公式|AB|=x1+x2+p,若不過焦點,則必須用一般弦長公式.20、(1)詳見解析;(2).【解析】
(1)利用線面垂直的判定定理和性質定理即可證明;(2)取中點為,則,證得平面,利用等體積法求解即可.【詳解】(1)因為,,,是的中點,,為直三棱柱,所以平面,因為為中點,所以平面,,又,平面(2),又分別是中點,.由(1)知,,又平面,取中點為,連接如圖,則,平面,設點到平面的距離為,由,得,即,解得,點到平面的距離為.【點睛】本題考查線面垂直的判定定理和性質定理、等體積法求點到面的距離;考查邏輯推理能力和運算求解能力;熟練掌握線面垂直的判定定理和性質定理是求解本題的關鍵;屬于中檔題.21、(1)單調減區間為,單調增區間為;(2)詳見解析;(3).【解析】
試題分析:(1)對函數求導后,利用導數和單調性的關系,可求得函數的單調區間.(2)構造
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 周末小事記周記類型作文(11篇)
- 2025年水電行業投資熱點項目與大型水電項目投資前景分析報告
- 汽車行業供應鏈韌性提升與風險防控策略研究報告2025
- 分析旅游行業在服務提升方面的創新點和難點
- 2025年金屬焊接材料項目規劃申請報告
- 電子競技俱樂部電競衍生品開發與品牌增值研究報告2025
- 假期旅游同意函與工作證明相結合(7篇)
- 2025年金屬粉末:銅粉系列項目立項申請報告模板
- 我眼中的家鄉小學生寫景作文13篇
- 2025年兒童自行車項目規劃申請報告
- 華師專業英語詞匯表
- 全飛秒激光近視手術
- 2024高校院長述職報告
- 酒店升級改造方案
- 高一新生分班考試英語試卷(含答案)
- 軍工行業產業分析
- 《地震和地震災害》課件
- 《制造業的成本》課件
- 《古典主義文學》課件
- 腎病科膜增生性腎小球腎炎診療規范2023版
- 人工智能引論智慧樹知到課后章節答案2023年下浙江大學
評論
0/150
提交評論