2024屆黔南市重點中學九年級數學第一學期期末監測試題含解析_第1頁
2024屆黔南市重點中學九年級數學第一學期期末監測試題含解析_第2頁
2024屆黔南市重點中學九年級數學第一學期期末監測試題含解析_第3頁
2024屆黔南市重點中學九年級數學第一學期期末監測試題含解析_第4頁
2024屆黔南市重點中學九年級數學第一學期期末監測試題含解析_第5頁
已閱讀5頁,還剩23頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2024屆黔南市重點中學九年級數學第一學期期末監測試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每題4分,共48分)1.如圖,是正方形的外接圓,點是上的一點,則的度數是()A. B.C. D.2.已知函數的圖象過點,則該函數的圖象必在()A.第二、三象限 B.第二、四象限C.第一、三象限 D.第三、四象限3.二次函數與的圖象與x軸有交點,則k的取值范圍是A. B.且 C. D.且4.如圖,△ABC內接于圓O,∠A=50°,∠ABC=60°,BD是圓O的直徑,BD交AC于點E,連結DC,則∠AEB等于()A.70° B.110° C.90° D.120°5.如圖所示,若△ABC∽△DEF,則∠E的度數為()A.28° B.32° C.42° D.52°6.下列圖形中,既是軸對稱圖形又是中心對稱圖形的是()A.平行四邊形 B.菱形 C.等邊三角形 D.等腰直角三角形7.如圖,O是坐標原點,菱形OABC的頂點A的坐標為(3,﹣4),頂點C在x軸的正半軸上,函數y=(k<0)的圖象經過點B,則k的值為()A.﹣12 B.﹣32 C.32 D.﹣368.下列數是無理數的是()A. B. C. D.9.已知k1<0<k2,則函數y=k1x和的圖象大致是()A. B. C. D.10.如圖,OA交⊙O于點B,AD切⊙O于點D,點C在⊙O上.若∠A=40°,則∠C為()A.20° B.25° C.30° D.35°11.已知反比例函數y=kx的圖象經過點P(﹣2,3A.(﹣1,﹣6) B.(1,6) C.(3,﹣2) D.(3,2)12.如圖,、兩點在雙曲線上,分別經過點、兩點向、軸作垂線段,已知,則()A.6 B.5 C.4 D.3二、填空題(每題4分,共24分)13.如圖,△ABC中,AB=AC=5,BC=6,AD⊥BC,E、F分別為AC、AD上兩動點,連接CF、EF,則CF+EF的最小值為_____.14.如圖所示,在平面直角坐標系中,正方形OABC的頂點O與原點重合,頂點A,C分別在x軸、y軸上,雙曲線y=kx﹣1(k≠0,x>0)與邊AB、BC分別交于點N、F,連接ON、OF、NF.若∠NOF=45°,NF=2,則點C的坐標為_____.15.已知正方形的邊長為1,為射線上的動點(不與點重合),點關于直線的對稱點為,連接,,,.當是等腰三角形時,的值為__________.16.已知,是方程的兩個實根,則______.17.在△ABC中,∠B=45°,cosA=,則∠C的度數是_____.18.10件外觀相同的產品中有1件不合格,現從中任意抽取1件進行檢測,抽到不合格產品的概率是______.三、解答題(共78分)19.(8分)在一個不透明的口袋中裝有3張相同的紙牌,它們分別標有數字3,﹣1,2,隨機摸出一張紙牌不放回,記錄其標有的數字為x,再隨機摸取一張紙牌,記錄其標有的數字為y,這樣就確定點P的一個坐標為(x,y)(1)用列表或畫樹狀圖的方法寫出點P的所有可能坐標;(2)寫出點P落在雙曲線上的概率.20.(8分)如圖,拋物線y=-x2+bx+3與x軸交于A,B兩點,與y軸交于點C,其中點A(-1,0).過點A作直線y=x+c與拋物線交于點D,動點P在直線y=x+c上,從點A出發,以每秒個單位長度的速度向點D運動,過點P作直線PQ∥y軸,與拋物線交于點Q,設運動時間為t(s).(1)直接寫出b,c的值及點D的坐標;(2)點E是拋物線上一動點,且位于第四象限,當△CBE的面積為6時,求出點E的坐標;(3)在線段PQ最長的條件下,點M在直線PQ上運動,點N在x軸上運動,當以點D、M、N為頂點的三角形為等腰直角三角形時,請求出此時點N的坐標.21.(8分)動畫片《小豬佩奇》分靡全球,受到孩子們的喜愛.現有4張《小豬佩奇》角色卡片,分別是A佩奇,B喬治,C佩奇媽媽,D佩奇爸爸(四張卡片除字母和內容外,其余完全相同).姐弟兩人做游戲,他們將這四張卡片混在一起,背面朝上放好.(1)姐姐從中隨機抽取一張卡片,恰好抽到A佩奇的概率為;(2)若兩人分別隨機抽取一張卡片(不放回),請用列表或畫樹狀圖的分方法求出恰好姐姐抽到A佩奇弟弟抽到B喬治的概率.22.(10分)綜合與實踐—探究正方形旋轉中的數學問題問題情境:已知正方形中,點在邊上,且.將正方形繞點順時針旋轉得到正方形(點,,,分別是點,,,的對應點).同學們通過小組合作,提出下列數學問題,請你解答.特例分析:(1)“樂思”小組提出問題:如圖1,當點落在正方形的對角線上時,設線段與交于點.求證:四邊形是矩形;(2)“善學”小組提出問題:如圖2,當線段經過點時,猜想線段與滿足的數量關系,并說明理由;深入探究:(3)請從下面,兩題中任選一題作答.我選擇題.A.在圖2中連接和,請直接寫出的值.B.“好問”小組提出問題:如圖3,在正方形繞點順時針旋轉的過程中,設直線交線段于點.連接,并過點作于點.請在圖3中補全圖形,并直接寫出的值.23.(10分)某高速公路建設中,需要確定隧道AB的長度.已知在離地面1800m高度C處的飛機上,測量人員測得正前方A,B兩點處的俯角分別為60°和45°(即∠DCA=60°,∠DCB=45°).求隧道AB的長.(結果保留根號)24.(10分)如圖,已知一次函數y=x﹣2與反比例函數y=的圖象交于A、B兩點.(1)求A、B兩點的坐標;(2)求△AOB的面積.25.(12分)為了維護國家主權,海軍艦隊對我國領海例行巡邏.如圖,正在執行巡航任務的艦隊以每小時50海里的速度向正東方航行,在A處測得燈塔P在北偏東60°方向上,繼續航行1小時到達B處,此時測得燈塔在北偏東30°方向上.(1)求∠APB的度數.(2)已知在燈塔P的周圍40海里范圍內有暗礁,問艦隊繼續向正東方向航行是否安全?26.在大課間活動中,同學們積極參加體育鍛煉,小明就本班同學“我最喜愛的體育項目”進行了一次調查統計,下面是他通過收集數據后,繪制的兩幅不完整的統計圖.請你根據圖中提供的信息,解答以下問題:(1)該班共有名學生;(2)補全條形統計圖;(3)在扇形統計圖中,“乒乓球”部分所對應的圓心角度數為;(4)學校將舉辦體育節,該班將推選5位同學參加乒乓球活動,有3位男同學(A,B,C)和2位女同學(D,E),現準備從中選取兩名同學組成雙打組合,用樹狀圖或列表法求恰好選出一男一女組成混合雙打組合的概率.

參考答案一、選擇題(每題4分,共48分)1、C【分析】首先連接OB,OA,由⊙O是正方形ABCD的外接圓,即可求得∠AOB的度數,又由在同圓或等圓中,同弧或等弧所對的圓周角等于這條弧所對的圓心角的一半,即可求得的度數.【詳解】解:連接OB,OA,∵⊙O是正方形ABCD的外接圓,∴∠BOA=90°,∴=∠BOA=45°.故選:C.【點睛】此題考查了圓周角定理與圓的內接多邊形、正方形的性質等知識.此題難度不大,注意準確作出輔助線,注意數形結合思想的應用.2、B【解析】試題分析:對于反比例函數y=,當k>0時,函數圖像在一、三象限;當k<0時,函數圖像在二、四象限.根據題意可得:k=-2.考點:反比例函數的性質3、D【解析】利用△=b2-4ac≥1,且二次項系數不等于1求出k的取值范圍.【詳解】∵二次函數與y=kx2-8x+8的圖象與x軸有交點,∴△=b2-4ac=64-32k≥1,k≠1,解得:k≤2且k≠1.故選D.【點睛】此題主要考查了拋物線與x軸的交點,熟練掌握一元二次方程根的判別式與根的關系是解題關鍵.4、B【解析】解:由題意得,∠A=∠D=50°,∠DCB=90°,∠DBC=40°,∠ABC=60°,ABD=20°,∠AEB=180°-∠ABD-∠D=110°,故選B.5、C【詳解】∵△ABC∽△DEF,∴∠B=∠E,在△ABC中,∠A=110°,∠C=28°,∴∠B=180°-∠A-∠C=42°,∴∠E=42°,故選C.6、B【解析】試題解析:A.不是軸對稱圖形,是中心對稱圖形,故此選項錯誤,不合題意;B.是軸對稱圖形,也是中心對稱圖形,故此選項正確,符合題意;C.是軸對稱圖形,不是中心對稱圖形,故此選項錯誤,不合題意;D.無法確定是軸對稱圖形,也不是中心對稱圖形,故此選項錯誤,不合題意.故選B.7、B【解析】解:∵O是坐標原點,菱形OABC的頂點A的坐標為(3,﹣4),頂點C在x軸的正半軸上,∴OA=5,AB∥OC,∴點B的坐標為(8,﹣4),∵函數y=(k<0)的圖象經過點B,∴﹣4=,得k=﹣32.故選B.【點睛】本題主要考查菱形的性質和用待定系數法求反函數的系數,解此題的關鍵在于根據A點坐標求得OA的長,再根據菱形的性質求得B點坐標,然后用待定系數法求得反函數的系數即可.8、C【分析】根據無理數的定義進行判斷即可.【詳解】A.,有理數;B.,有理數;C.,無理數;D.,有理數;故答案為:C.【點睛】本題考查了無理數的問題,掌握無理數的定義是解題的關鍵.9、D【解析】試題分析::∵k1<0<k2,∴直線過二、四象限,并且經過原點;雙曲線位于一、三象限.故選D.考點:1.反比例函數的圖象;2.正比例函數的圖象.10、B【分析】根據切線的性質得到∠ODA=90°,根據直角三角形的性質求出∠DOA,根據圓周角定理計算即可.【詳解】解:∵切于點∴∴∵∴∴故選:B【點睛】本題考查了切線的性質:圓心與切點的連線垂直切線、圓周角定理以及直角三角形兩銳角互余的性質,結合圖形認真推導即可得解.11、C【解析】先根據點(-2,3),在反比例函數y=k的圖象上求出k的值,再根據k=xy的特點對各選項進行逐一判斷.【詳解】∵反比例函數y=kx的圖象經過點(﹣2,3)∴k=2×3=-6,A.∵(-6)×(-1)=6≠-6,∴此點不在反比例函數圖象上;B.∵1×6=6≠-6,∴此點不在反比例函數圖象上;C.∵3×(-2)=-6,∴此點在反比例函數圖象上;D.∵3×2=6≠-6,∴此點不在反比例函數圖象上。故答案選:C.【點睛】本題考查的知識點是反比例函數圖像上點的坐標特點,解題的關鍵是熟練的掌握反比例函數圖像上點的坐標特點.12、C【解析】欲求S1+S1,只要求出過A、B兩點向x軸、y軸作垂線段與坐標軸所形成的矩形的面積即可,而矩形面積為雙曲線的系數k,由此即可求出S1+S1.【詳解】解:∵點A、B是雙曲線上的點,分別經過A、B兩點向x軸、y軸作垂線段,

則根據反比例函數的圖象的性質得兩個矩形的面積都等于|k|=2,

∴S1+S1=2+2-1×1=2.

故選:C.【點睛】本題主要考查了反比例函數的圖象和性質及任一點坐標的意義,有一定的難度.二、填空題(每題4分,共24分)13、【分析】作BM⊥AC于M,交AD于F,根據三線合一定理求出BD的長和AD⊥BC,根據三角形面積公式求出BM,根據對稱性質求出BF=CF,根據垂線段最短得出CF+EF≥BM,即可得出答案.【詳解】作BM⊥AC于M,交AD于F,∵AB=AC=5,BC=6,AD是BC邊上的中線,∴BD=DC=3,AD⊥BC,AD平分∠BAC,∴B、C關于AD對稱,∴BF=CF,根據垂線段最短得出:CF+EF=BF+EF≥BF+FM=BM,即CF+EF≥BM,∵S△ABC=×BC×AD=×AC×BM,∴BM=,即CF+EF的最小值是,故答案為:.【點睛】本題考查了軸對稱?最短路線問題,關鍵是畫出符合條件的圖形,題目具有一定的代表性,是一道比較好的題目.14、(0,+1)【分析】將△OAN繞點O逆時針旋轉90°,點N對應N′,點A對應A′,由旋轉和正方形的性質即可得出點A′與點C重合,以及F、C、N′共線,通過角的計算即可得出∠N'OF=∠NOF=45°,結合ON′=ON、OF=OF即可證出△N'OF≌△NOF(SAS),由此即可得出N′M=NF=1,再由△OCF≌△OAN即可得出CF=N,通過邊與邊之間的關系即可得出BN=BF,利用勾股定理即可得出BN=BF=,設OC=a,則N′F=1CF=1(a﹣),由此即可得出關于a的一元一次方程,解方程即可得出點C的坐標.【詳解】將△OAN繞點O逆時針旋轉90°,點N對應N′,點A對應A′,如圖所示.∵OA=OC,∴OA′與OC重合,點A′與點C重合.∵∠OCN′+∠OCF=180°,∴F、C、N′共線.∵∠COA=90°,∠FON=45°,∴∠COF+∠NOA=45°.∵△OAN旋轉得到△OCN′,∴∠NOA=∠N′OC,∴∠COF+∠CON'=45°,∴∠N'OF=∠NOF=45°.在△N'OF與△NOF中,,∴△N′OF≌△NOF(SAS),∴NF=N'F=1.∵△OCF≌△OAN,∴CF=AN.又∵BC=BA,∴BF=BN.又∠B=90°,∴BF1+BN1=NF1,∴BF=BN=.設OC=a,則CF=AN=a﹣.∵△OAN旋轉得到△OCN′,∴AN=CN'=a﹣,∴N'F=1(a﹣),又∵N'F=1,∴1(a﹣)=1,解得:a=+1,∴C(0,+1).故答案是:(0,+1).【點睛】本題考查了反比例函數綜合題,涉及到了全等三角形的判定與性質、旋轉的性質以及勾股定理,解題的關鍵是找出關于a的一元一次方程.本題屬于中檔題,難度不大,解決該題型題目時,根據全等三角形的性質找出相等的邊角關系是關鍵.15、或或【分析】以B為圓心,以AB長為半徑畫弧,以C為圓心,以CD長為半徑畫弧,兩弧分別交于,此時都是以CD為腰的等腰三角形;作CD的垂直平分線交弧AC于點,此時以CD為底的等腰三角形.然后分別對這三種情況進行討論即可.【詳解】如圖,以B為圓心,以AB長為半徑畫弧,以C為圓心,以CD長為半徑畫弧,兩弧分別交于,此時都是以CD為腰的等腰三角形;作CD的垂直平分線交弧AC于點,此時以CD為底的等腰三角形(1)討論,如圖作輔助線,連接,作交AD于點P,過點,作于Q,交BC于F,為等邊三角形,正方形ABCD邊長為1在四邊形中∴為含30°的直角三角形(2)討論,如圖作輔助線,連接,作交AD于點P,連接BP,過點,作于Q,交AB于F,∵EF垂直平分CD∴EF垂直平分AB為等邊三角形在四邊形中(3)討論,如圖作輔助線,連接,過作交AD的延長線于點P,連接BP,過點,作于Q,此時在EF上,不妨記與F重合為等邊三角形,在四邊形中故答案為:或或.【點睛】本題主要考查等腰三角形的定義和解直角三角形,注意分情況討論是解題的關鍵.16、27【分析】根據根與系數的關系,由x12+x22=(x1+x2)2?2x1x2,即可得到答案.【詳解】∵x1,x2是方程

x2?5x?1=0

的兩根,∴x1+x2=5,x1?x2=?1,∴x12+x22=(x1+x2)2?2x1x2=52-2×(-1)=27;故答案為27.【點睛】本題考查了一元二次方程的根與系數的關系,解題的關鍵是熟練掌握根與系數的關系,并正確進行化簡計算.17、75°【解析】已知在△ABC中°,cosA=,可得∠A=60°,又因∠B=45,根據三角形的內角和定理可得∠C=75°.18、【解析】試題分析:P(抽到不合規產品)=.三、解答題(共78分)19、(1)(-1,3)(2,3)(3,-1)(2,-1)(3,2)(-1,2),表格見解析;(2).【分析】(1)首先根據題意列出表格,由表格即可求得所有等可能的結果;(2)由(1)可求得所確定的點P落在雙曲線y=﹣上的情況,然后利用概率公式求解即可求得答案.【詳解】(1)列表得:則可能出現的結果共有6個,為(-1,3)(2,3)(3,-1)(2,-1)(3,2)(-1,2),它們出現的可能性相等;(2)∵滿足點P(x,y)落在雙曲線y=﹣上的結果有2個,為(3,﹣1),(﹣1,3),∴點P落在雙曲線上的概率==【點睛】此題考查的是用列表法或樹狀圖法求概率.注意畫樹狀圖法與列表法可以不重復不遺漏的列出所有可能的結果,列表法適合于兩步完成的事件;樹狀圖法適合兩步或兩步以上完成的事件;注意概率=所求情況數與總情況數之比.20、(1)b=2,c=1,D(2,3);(2)E(4,-5);(3)N(2,0),N(-4,0),N(-2.5,0),N(3.5,0)【分析】(1)將點A分別代入y=-x2+bx+3,y=x+c中求出b、c的值,確定解析式,再解兩個函數關系式組成的方程組即可得到點D的坐標;(2))過點E作EF⊥y軸,設E(x,-x2+2x+3),先求出點B、C的坐標,再利用面積加減關系表示出△CBE的面積,即可求出點E的坐標.(3)分別以點D、M、N為直角頂點討論△MND是等腰直角三角形時點N的坐標.【詳解】(1)將A(-1,0)代入y=-x2+bx+3中,得-1-b+3=0,解得b=2,∴y=-x2+2x+3,將點A代入y=x+c中,得-1+c=0,解得c=1,∴y=x+1,解,解得,(舍去),∴D(2,3).∴b=2,c=1,D(2,3).(2)過點E作EF⊥y軸,設E(x,-x2+2x+3),當y=-x2+2x+3中y=0時,得-x2+2x+3=0,解得x1=3,x2=-1(舍去),∴B(3,0).∵C(0,3),∴,∴,解得x1=4,x2=-1(舍去),∴E(4,-5).(3)∵A(-1,0),D(2,3),∴直線AD的解析式為y=x+1,設P(m,m+1),則Q(m,-m2+2m+3),∴線段PQ的長度h=-m2+2m+3-(m+1)=,∴當=0.5,線段PQ有最大值.當∠D是直角時,不存在△MND是等腰直角三角形的情形;當∠M是直角時,如圖1,點M在線段DN的垂直平分線上,此時N1(2,0);當∠M是直角時,如圖2,作DE⊥x軸,M2E⊥HE,N2H⊥HE,∴∠H=∠E=90,∵△M2N2D是等腰直角三角形,∴N2M2=M2D,∠N2M2D=90,∵∠N2M2H=∠M2DE,∴△N2M2H≌△M2DE,∴N2H=M2E=2-0.5=1.5,M2H=DE,∴E(2,-1.5),∴M2H=DE=3+1.5=4.5,∴ON2=4.5-0.5=4,∴N2(-4,0);當∠N是直角時,如圖3,作DE⊥x軸,∴∠N3HM3=∠DEN3=90,∵△M3N3D是等腰直角三角形,∴N3M3=N3D,∠DN3M3=90,∵∠DN3E=∠N3M3H,∴△DN3E≌△N3M3H,∴N3H=DE=3,∴N3O=3-0.5=2.5,∴N3(-2.5,0);當∠N是直角時,如圖4,作DE⊥x軸,∴∠N4HM4=∠DEN4=90,∵△M4N4D是等腰直角三角形,∴N4M4=N4D,∠DN4M4=90,∵∠DN4E=∠N4M4H,∴△DN4E≌△N4M4H,∴N4H=DE=3,∴N4O=3+0.5=3.5,∴N4(3.5,0);綜上,N(2,0),N(-4,0),N(-2.5,0),N(3.5,0).【點睛】此題是二次函數的綜合題,考查待定系數法求函數解析式;根據函數性質得到點坐標,由此求出圖象中圖形的面積;還考查了圖象中構成的等腰直角三角形的情況,此時依據等腰直角三角形的性質,求出點N的坐標.21、(1);(2)【解析】(1)直接利用求概率公式計算即可;(2)畫樹狀圖(或列表格)列出所有等可能結果,根據概率公式即可解答.【詳解】(1);(2)方法1:根據題意可畫樹狀圖如下:方法2:根據題意可列表格如下:弟弟姐姐ABCDA(A,B)(A,C)(A,D)B(B,A)(B,C)(B,D)C(C,A)(C,B)(C,D)D(D,A)(D,B)(D,C)由列表(樹狀圖)可知,總共有12種結果,每種結果出現的可能性相同,其中姐姐抽到A佩奇,弟弟抽到B喬治的結果有1種:(A,B).∴P(姐姐抽到A佩奇,弟弟抽到B喬治)【點睛】本題考查的是用列表法或樹狀圖法求概率,列表法可以不重復不遺漏的列出所有可能的結果,適合于兩步完成的事件;樹狀圖法適合兩步或兩步以上完成的事件;解決問題用到概率公式:概率=所求情況數與總情況數之比.22、(1)見解析;(2);(3)A.,B..【分析】(1)根據旋轉性質證得,從而證得緒論;(2)連接、,過點作,根據旋轉性質結合三角形三線合一的性質證得,再證得四邊形是矩形,從而求得結論;(3)A.設,根據旋轉性質結合兩邊對應成比例且夾角相等證得,利用相似三角形對應邊成比例再結合勾股定理即可求得答案;B.作交直線于點,根據旋轉性質利用AAS證得,證得OP是線段的中垂線,根據旋轉性質結合兩邊對應成比例且夾角相等證得,利用相似三角形對應高的比等于相似比再結合勾股定理即可求得答案;【詳解】(1)由題意得:,,由旋轉性質得:,∵四邊形是矩形(2)連接、,過點作于N,由旋轉得:,∵,,∵ON⊥D,∠=∠,∴四邊形是矩形,∴,∴;(3)A.如圖,連接,,,由旋轉的性質得:∠BO=∠,BO=O,,∴,∴,,,設,則,B.如圖,過點作AG∥交直線于點G,過點O作交直線于點,連接OP,∵AG∥,,四邊形是正方形,由旋轉可知:,,,,,,,,,,,,在和中,,,又∵,,,,,,,又∵,,,,,設,則,,在中,由勾股定理可得:,.【點睛】本題考查四邊形綜合題、旋轉變換、全等三角形的判定和性質、相似三角形的判定和性質、、勾股定理、矩形的性質、線段的垂直平分線的性質和判定等知識,解題的關鍵是準確尋找全等三角形解決問題.23、隧道AB的長為(1800﹣600)m【分析】易得∠CAO=60°,∠CBO=45°,利用相應的正切值可得BO,AO的長,相減即可得到AB的長.【詳解】解:∵CDOB,∴∠CAO=∠DCA=60°,∠CBO=∠DCB=45°,在RtCAO中,tan∠CAO==tan60°,∴,∴OA=600,在RtCAO中,tan∠CBO==tan45°,∴OB=OC=1800,∴AB=OB﹣OA=1800﹣600.答:隧道AB的長為(1800﹣60

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論