2024屆江蘇省連云港市數(shù)學(xué)高一第二學(xué)期期末經(jīng)典模擬試題含解析_第1頁
2024屆江蘇省連云港市數(shù)學(xué)高一第二學(xué)期期末經(jīng)典模擬試題含解析_第2頁
2024屆江蘇省連云港市數(shù)學(xué)高一第二學(xué)期期末經(jīng)典模擬試題含解析_第3頁
2024屆江蘇省連云港市數(shù)學(xué)高一第二學(xué)期期末經(jīng)典模擬試題含解析_第4頁
2024屆江蘇省連云港市數(shù)學(xué)高一第二學(xué)期期末經(jīng)典模擬試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2024屆江蘇省連云港市數(shù)學(xué)高一第二學(xué)期期末經(jīng)典模擬試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.在中,內(nèi)角的對邊分別為,且,,若,則()A.2 B.3 C.4 D.2.袋中有個大小相同的小球,其中個白球,個紅球,個黑球,現(xiàn)在從中任意取一個,則取出的球恰好是紅色或者黑色小球的概率為()A. B. C. D.3.中國古代數(shù)學(xué)著作《孫子算經(jīng)》中有這樣一道算術(shù)題:“今有物不知其數(shù),三三數(shù)之余二,五五數(shù)之余三,問物幾何?”人們把此類題目稱為“中國剩余定理”,若正整數(shù)除以正整數(shù)后的余數(shù)為,則記為,例如.現(xiàn)將該問題以程序框圖的算法給出,執(zhí)行該程序框圖,則輸出的等于().A. B. C. D.4.已知β為銳角,角α的終邊過點(3,4),sin(α+β)=,則cosβ=()A. B. C. D.或5.以拋物線C的頂點為圓心的圓交C于A、B兩點,交C的準(zhǔn)線于D、E兩點.已知|AB|=,|DE|=,則C的焦點到準(zhǔn)線的距離為()A.2 B.4 C.6 D.86.如果執(zhí)行右面的框圖,輸入,則輸出的數(shù)等于()A. B. C. D.7.已知直線經(jīng)過點,且傾斜角為,則直線的方程為()A. B.C. D.8.如圖,網(wǎng)格紙上小正方形的邊長均為1,粗線畫出的是某幾何體的三視圖,則該幾何體的體積為()A.34 B.42 C.54 D.729.若實數(shù)x,y滿足條件,目標(biāo)函數(shù),則z的最大值為()A. B.1 C.2 D.010.設(shè),為兩個平面,則能斷定∥的條件是()A.內(nèi)有無數(shù)條直線與平行 B.,平行于同一條直線C.,垂直于同一條直線 D.,垂直于同一平面二、填空題:本大題共6小題,每小題5分,共30分。11.用線性回歸某型求得甲、乙、丙3組不同的數(shù)據(jù)的線性關(guān)系數(shù)分別為0.81,-0.98,0.63,其中_________(填甲、乙、丙中的一個)組數(shù)據(jù)的線性關(guān)系性最強。12.甲、乙兩名新戰(zhàn)土組成戰(zhàn)術(shù)小組進行射擊訓(xùn)練,已知單發(fā)射擊時,甲戰(zhàn)士擊中靶心的概率為0.8,乙戰(zhàn)士擊中靶心的概率為0.5,兩人射擊的情況互不影響若兩人各單發(fā)射擊一次,則至少有一發(fā)擊中靶心的概率是______.13.對于0≤m≤4的任意m,不等式x2+mx>4x+m-3恒成立,則x的取值范圍是________________.14.已知,則__________.15.已知圓錐的表面積等于,其側(cè)面展開圖是一個半圓,則底面圓的半徑為__________.16.函數(shù)在的值域是__________________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知向量的夾角為60°,且.(1)求與的值;(2)求與的夾角.18.如果定義在上的函數(shù),對任意的,都有,則稱該函數(shù)是“函數(shù)”.(I)分別判斷下列函數(shù):①;②;③,是否為“函數(shù)”?(直接寫出結(jié)論)(II)若函數(shù)是“函數(shù)”,求實數(shù)的取值范圍.(III)已知是“函數(shù)”,且在上單調(diào)遞增,求所有可能的集合與19.已知數(shù)列滿足:,,數(shù)列滿足.(1)若數(shù)列的前項和為,求的值;(2)求的值.20.如圖是一景區(qū)的截面圖,是可以行走的斜坡,已知百米,是沒有人行路(不能攀登)的斜坡,是斜坡上的一段陡峭的山崖.假設(shè)你(看做一點)在斜坡上,身上只攜帶著量角器(可以測量以你為頂點的角).(1)請你設(shè)計一個通過測量角可以計算出斜坡的長的方案,用字母表示所測量的角,計算出的長,并化簡;(2)設(shè)百米,百米,,,求山崖的長.(精確到米)21.已知的三個頂點為.(1)求過點且平行于的直線方程;(2)求過點且與、距離相等的直線方程.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解題分析】

利用正弦定理化簡,由此求得的值.利用三角形內(nèi)角和定理和兩角和與差的正弦公式化簡,由此求得的值,進而求得的值.【題目詳解】利用正弦定理化簡得,所以為銳角,且.由于,所以由得,化簡得.若,則,故.若,則,由余弦定理得,解得.綜上所述,,故選B.【題目點撥】本小題主要考查正弦定理、余弦定理解三角形,考查同角三角函數(shù)的基本關(guān)系式,考查三角形內(nèi)角和定理,考查兩角和與差的正弦公式,屬于中檔題.2、D【解題分析】

利用古典概型的概率公式可計算出所求事件的概率.【題目詳解】從袋中個球中任取一個球,取出的球恰好是一個紅色或黑色小球的基本事件數(shù)為,因此,取出的球恰好是紅色或者黑色小球的概率為,故選D.【題目點撥】本題考查古典概型概率的計算,解題時要確定出全部基本事件數(shù)和所求事件所包含的基本事件數(shù),并利用古典概型的概率公式進行計算,考查計算能力,屬于基礎(chǔ)題.3、C【解題分析】從21開始,輸出的數(shù)是除以3余2,除以5余3,滿足條件的是23,故選C.4、B【解題分析】

由題意利用任意角的三角函數(shù)的定義求得sinα和cosα,再利用同角三角函數(shù)的基本關(guān)系求得cos(α+β)的值,再利用兩角差的余弦公式求得cosβ=cos[(α+β)﹣α]的值.【題目詳解】β為銳角,角α的終邊過點(3,4),∴sinα,cosα,sin(α+β)sinα,∴α+β為鈍角,∴cos(α+β),則cosβ=cos[(α+β)﹣α]=cos(α+β)cosα+sin(α+β)sinα??,故選B.【題目點撥】本題主要考查任意角的三角函數(shù)的定義,同角三角函數(shù)的基本關(guān)系、兩角和差的余弦公式的應(yīng)用,屬于基礎(chǔ)題.5、B【解題分析】

如圖,設(shè)拋物線方程為,交軸于點,則,即點縱坐標(biāo)為,則點橫坐標(biāo)為,即,由勾股定理知,,即,解得,即的焦點到準(zhǔn)線的距離為4,故選B.【題目點撥】6、D【解題分析】試題分析:當(dāng)時,該程序框圖所表示的算法功能為:,故選D.考點:程序框圖.7、C【解題分析】

根據(jù)傾斜角求得斜率,再根據(jù)點斜式寫出直線方程,然后化為一般式.【題目詳解】傾斜角為,斜率為,由點斜式得,即.故選C.【題目點撥】本小題主要考查傾斜角與斜率對應(yīng)關(guān)系,考查直線的點斜式方程和一般式方程,屬于基礎(chǔ)題.8、C【解題分析】

還原幾何體得四棱錐E﹣ABCD,由圖中數(shù)據(jù)利用椎體的體積公式求解即可.【題目詳解】依三視圖知該幾何體為四棱錐E﹣ABCD,如圖,ABCD是直角梯形,是棱長為6的正方體的一部分,梯形的面積為:12幾何體的體積為:13故選:C.【題目點撥】本題考查三視圖求幾何體的體積,由三視圖正確還原幾何體和補形是解題的關(guān)鍵,考查空間想象能力.9、C【解題分析】

畫出可行域和目標(biāo)函數(shù),根據(jù)平移得到最大值.【題目詳解】若實數(shù)x,y滿足條件,目標(biāo)函數(shù)如圖:當(dāng)時函數(shù)取最大值為故答案選C【題目點撥】求線性目標(biāo)函數(shù)的最值:當(dāng)時,直線過可行域且在軸上截距最大時,值最大,在軸截距最小時,z值最??;當(dāng)時,直線過可行域且在軸上截距最大時,值最小,在軸上截距最小時,值最大.10、C【解題分析】

對四個選項逐個分析,可得出答案.【題目詳解】對于選項A,當(dāng),相交于直線時,內(nèi)有無數(shù)條直線與平行,即A錯誤;對于選項B,當(dāng),相交于直線時,存在直線滿足:既與平行又不在兩平面內(nèi),該直線平行于,,故B錯誤;對于選項C,設(shè)直線AB垂直于,平面,垂足分別為A,B,假設(shè)與不平行,設(shè)其中一個交點為C,則三角形ABC中,,顯然不可能成立,即假設(shè)不成立,故與平行,故C正確;對于選項D,,垂直于同一平面,與可能平行也可能相交,故D錯誤.【題目點撥】本題考查了面面平行的判斷,考查了學(xué)生的空間想象能力,屬于中檔題.二、填空題:本大題共6小題,每小題5分,共30分。11、乙【解題分析】由當(dāng)數(shù)據(jù)的相關(guān)系數(shù)的絕對值越趨向于,則相關(guān)性越強可知,因為甲、乙、丙組不同的數(shù)據(jù)的線性相關(guān)系數(shù)分別為,所以乙線性相關(guān)系數(shù)的絕對值越接近,所以乙組數(shù)據(jù)的相關(guān)性越強.12、【解題分析】

利用對立事件概率計算公式和相互獨立事件概率乘法公式能求出至少有一發(fā)擊中靶心的概率.【題目詳解】甲、乙兩名新戰(zhàn)土組成戰(zhàn)術(shù)小組進行射擊訓(xùn)練,單發(fā)射擊時,甲戰(zhàn)士擊中靶心的概率為0.8,乙戰(zhàn)士擊中靶心的概率為0.5,兩人射擊的情況互不影響若兩人各單發(fā)射擊一次,則至少有一發(fā)擊中靶心的概率是:.故答案為0.1.【題目點撥】本題考查概率的求法,考查對立事件概率計算公式和相互獨立事件概率乘法公式等基礎(chǔ)知識,考查運算求解能力,屬于基礎(chǔ)題.13、(-∞,-1)∪(3,+∞)【解題分析】不等式可化為m(x-1)+x2-4x+3>0在0≤m≤4時恒成立.令f(m)=m(x-1)+x2-4x+3.則??即x<-1或x>3.故答案為(-∞,-1)∪(3,+∞)14、【解題分析】

對已知等式的左右兩邊同時平方,利用同角的三角函數(shù)關(guān)系式和二倍角的正弦公式,可以求出的值,再利用二倍角的余弦公式可以求出.【題目詳解】因為,所以,即,所以.【題目點撥】本題考查了同角的三角函數(shù)關(guān)系,考查了二倍角的正弦公式和余弦公式,考查了數(shù)學(xué)運算能力.15、【解題分析】

設(shè)出底面圓的半徑,用半徑表示出圓錐的母線,再利用表面積,解出半徑?!绢}目詳解】設(shè)圓錐的底面圓的半徑為,母線為,則底面圓面積為,周長為,則解得故填2【題目點撥】本題考查根據(jù)圓錐的表面積求底面圓半徑,屬于基礎(chǔ)題。16、【解題分析】

利用反三角函數(shù)的性質(zhì)及,可得答案.【題目詳解】解:,且,,∴,故答案為:【題目點撥】本題主要考查反三角函數(shù)的性質(zhì),相對簡單.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1),;(2).【解題分析】

(1)根據(jù),即可得解;(2)根據(jù)公式計算求解.【題目詳解】(1)由題向量的夾角為60°,所以,,;(2),所以【題目點撥】此題考查平面向量數(shù)量積,根據(jù)定義計算兩個向量的數(shù)量積,求向量的模長和根據(jù)數(shù)量積與模長關(guān)系求向量夾角.18、(I)①、②是“函數(shù)”,③不是“函數(shù)”;(II)的取值范圍為;(III),【解題分析】試題分析:(1)根據(jù)“β函數(shù)”的定義判定.①、②是“β函數(shù)”,③不是“β函數(shù)”;(2)由題意,對任意的x∈R,f(﹣x)+f(x)≠0,故f(﹣x)+f(x)=2cosx+2a由題意,對任意的x∈R,2cosx+2a≠0,即a≠﹣cosx即可得實數(shù)a的取值范圍(3)對任意的x≠0,分(a)若x∈A且﹣x∈A,(b)若x∈B且﹣x∈B,驗證。(I)①、②是“函數(shù)”,③不是“函數(shù)”.(II)由題意,對任意的,,即.因為,所以.故.由題意,對任意的,,即.故實數(shù)的取值范圍為.(Ⅲ)()對任意的(a)若且,則,,這與在上單調(diào)遞增矛盾,(舍),(b)若且,則,這與是“函數(shù)”矛盾,(舍).此時,由的定義域為,故對任意的,與恰有一個屬于,另一個屬于.()假設(shè)存在,使得,則由,故.(a)若,則,矛盾,(b)若,則,矛盾.綜上,對任意的,,故,即,則.()假設(shè),則,矛盾.故故,.經(jīng)檢驗,.符合題意點睛:此題是新定義的題目,根據(jù)已知的新概念,新信息來馬上應(yīng)用到題型中,根據(jù)函數(shù)的定義即函數(shù)沒有關(guān)于原點對稱的部分即可,故可以從圖像的角度來研究函數(shù);第三問可以假設(shè)存在,最后推翻結(jié)論即可。19、(1);(2).【解題分析】

(1)構(gòu)造數(shù)列等差數(shù)列求得的通項公式,再進行求和,再利用裂項相消求得;

(2)由題出現(xiàn),故考慮用分為偶數(shù)和奇數(shù)兩種情況進行計算.【題目詳解】(1)由得,即,所以是以為首項,1為公差的等差數(shù)列,故,故.所以,故.

(2)當(dāng)為偶數(shù)時,,當(dāng)為奇數(shù)時,為偶數(shù),

綜上所述,當(dāng)為偶數(shù)時,,當(dāng)為奇數(shù)時,即.【題目點撥】本題主要考查了等差數(shù)列定義的應(yīng)用,考查構(gòu)造法求數(shù)列的通項公式與裂項求和及奇偶并項求和的方法,考查了分析問題的能力及邏輯推理能力,屬于中檔題.20、(1)米,詳見解析(2)205米【解題分析】

(1)由題意測得,,在中利用正弦定理求得的值;(2)解法一,中由余弦定理求得,中求得和的值,在中利用余弦定理求得的值.解法二,中求得,中利用余弦定理求得,利用三角恒等變換求得,在中利用余弦定理求得的值.【題目詳解】解:(1)據(jù)題意,可測得,,在中,由正弦定理,有,即.解得(米).(2)解一:在中,百米,百米,百米,由余弦定理,可得,解得,∴.又由已知,在中,,可解得,從而的.∵,在中,由余弦定理得米所以,的長度約為205米.解二:(2)在中,求得.在中,由余弦定理,得,進而得,再由可求得,.在中,由余弦定理,得.所以,的長度約為205米.【題目點撥】本題考查了三角恒等變換與解三角形的

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論