工程力學雙語課件_第1頁
工程力學雙語課件_第2頁
工程力學雙語課件_第3頁
工程力學雙語課件_第4頁
工程力學雙語課件_第5頁
已閱讀5頁,還剩1045頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

1

緒論

緒論LeonardoDaVincisaid:“mechanicsisamathematicparadise,becauseweacquiredmathematics'sfruithere."2LeonardoDaVinciGalileoGalileiHemadeadetailedstudyonthebasicconceptsofmovementincludingthecenterofgravity,speedandaccelerationandcameupwiththerigidmathematicformulas.Especiallytheconceptofaccelerationisthemilestoneinthehistoryofmechanics.

Galileo(1564~1642)isaGermanastronomer,mechanistandphilosopher.HewasborninPisaonFeb151564anddiedonJan.81642atthesameplace.INTRODUCTION達芬奇說:“力學是數學的樂園,因為我們在這里獲得了數學的果實。”3緒論達芬奇伽利略4INTRODUCTIONHeonceinformallyproposedlawofinertia,whichestablishedthefoundationforNewtontoproposeformallythefirstlawandthesecondlaw.ItcanbesaidthatGalileoisthePioneerofNewtoninthesettlementoftheclassicalmechanics.Galileoalsobroughtupwiththelawofresultantandtheruleoftheparabolicmotionandsetuptheprincipleofrelativity.Heisthefirstscientisttomakeatotofachievementsbythetelescope.Hekeptonfightingwiththeidealismandchurchphilosophyandsuggestedthatweshouldstudythelawofnaturebyspecificexperimentsandthoughtthatexperiencesarethesourceoftheory.GalileoGalilei達芬奇說:“力學是數學的樂園,因為我們在這里獲得了數學的果實。”5緒論達芬奇伽利略6Introduction

Herearehiscontributionstomechanics:hemadeafurtherstudyonthebasisofGalileoGalileiandotherpeopleandconcludedthethreeprinciplesofobjects’movementandmadeafirmfoundationformechanics.Heisthediscovererofthegravitationlawandsetupthetheoreticalsystemoftheclassicalmechanics.Healsomadeprofoundcontributionstothefieldofmathematics,opticsandastronomy.<Themaththeoryofnaturalphilosophy>ishismostimportantwork.Heconcludedmanyimportantdiscoveriesandstudyresultsinallhislifeinthebook.IsaacNewton(1642~1727)isagreatBritishphysicist,mathematicianandastronomer.HewasborninafamilyofpeasantsinLincolnonDec251624anddiedofKidneystoneinLondononMar201727.7緒論8Introduction

Hebeganhiscreativeworkbetween1903and1906anddidresearchintheUniversityinGermanyeveryyearsupervisedbyfamousscholars.Hewasaprofessorofcollegesbetween1907and1917.HecametoAmericain1922andengagedinthestudyofmechanics.In1928,hefound“themechanicsdepartmentofASME”andheld,variouskindsofmechanicsseminarsperiodically.Hehasmanyworksonappliedapplyingmechanics.Especiallysincetheyearoflatetwentieshehaswrittenabout20booksappliedsuchas<mechanicsofMaterials>,<AdvancedMechanicsofMaterials>and<MechanicsofStructures>exceptthathehasdonesomeworkinteachingandtrainingmaters.S.PisaRussiandynamicistwithAmericannationality.HewasborninUkraineonDec.231878anddiedinGermanonMay.291972.9緒論10IntroductionHemakesgreatcontributionstotheresearchoflocaldamageandtheengineeringapplicationoffracturedynamics.Hehastrainedsomeresearchersinmechanics.Heisactiveinacademicactivitiesandtakessomepositionsbothathomeandabroad.Heisacouncilmemberofthefirstsessioncouncilconference.Hecouncilchairpersonofthesecondsessioncouncilconferenceandtheexecutivemanagerofthethirdsessioncouncilconference.HewasborninfamilyinShoucity,Anhuiprovince.NowheistheprofessorofSouthwestJiaoTongUniversity.SunXunfangisanengineeringmechanistandmechanicseducationist.Hehasengagedintheresearchoffracture,damage,fatigueandcreepofsolidmechanics.Heisthefirsttoapplyfracturedynamicstopracticeanddevelopedthemethodofanalysisinelasto-plasticfracturedynamicswithsurfacecracksandassessmentinintegrity.11緒論12§0-1THERESEARCHOBJECTSOFMECHANICSOFMATERIALS1、Structuremembers2、Classificationof structuremembersINTRODUCTIONplateOrshellbarorrodclumpbody13§0-1材料力學的研究對象1、構件2、構件分類緒論塊體BeamsandrodsarethemainresearchobjectsofmechanicsofmaterialsINTRODUCTION材料力學以“梁、桿”為主要研究對象緒論MoststructuresaremadeupfromthebeamsandrodsINTRODUCTION工程中多為梁、桿結構緒論§0-2THETASKSOFMECHANICSOFMATERIALS ANDITSRELATIONWITHENGINEERING

18Strength、rigidity、stabilityINTRODUCTION§0-2材料力學的任務及與工程的聯系19強度、剛度、穩定性緒論20INTRODUCTION21緒論

Thetasksofmechanicsofmaterials22Undertherequestthatthestrength,rigidity,stabilityaresatisfied,offerthenecessarytheoreticalfoundationandcalculationmethodfordeterminingreasonableshapesanddimensions,choosingpropermaterialsforthecomponentsatthemosteconomicprice.,INTRODUCTION

材料力學的任務23在滿足強度、剛度、穩定性的要求下,以最經濟的代價,為構件確定合理的形狀和尺寸,選擇適宜的材料,而提供必要的理論基礎和計算方法。緒論1、Strength:Capacitytoresistfailure

ofacomponentoranelement.24

INTRODUCTION1、強度:25構件的抗破壞能力緒論INTRODUCTION緒論28INTRODUCTION29緒論30INTRODUCTION31緒論2、Rigidity:Capacitytoresistdeformationsofacomponentoranelement.32INTRODUCTION2、剛度:構件的抗變形能力。33緒論34INTRODUCTION35緒論36INTRODUCTION37緒論38StrengthandrigidityINTRODUCTION39強度和剛度緒論40

ProblemsaboutthestrengthandrigidityofengineeringcomponentsINTRODUCTION41

工程構件的強度、剛度問題緒論

3Stability:CapacitytoremaintheoriginalstateinequilibriumofacomponentoranelementINTRODUCTION構件保持原有平衡狀態的能力3、穩定性:緒論44Problemsaboutthestrength,rigidityandstabilityofengineeringstructuresProblemsaboutstabilitystrengthrigidityINTRODUCTION45

工程結構的強度、剛度和穩定問題穩定問題強度剛度緒論46

Thereareproblemsaboutthestrength,rigidityandstabilityinabicyclestructuretooINTRODUCTION47

自行車結構也有強度、剛度和穩定問題緒論48ThespacestationandspaceimplementsINTRODUCTION49空間站和航天器緒論50AirplanesandguidedmissilesintheweaponindustryINTRODUCTION51兵器工業、飛機與導彈緒論52weaponindustryINTRODUCTION53兵器工業緒論54civilaviationINTRODUCTION55民用航空緒論56vehicleandroadINTRODUCTION57車輛與道路緒論Problemsaboutthestrength,rigidityandstabilityinlargebridges.58INTRODUCTION大型橋梁的強度、剛度、穩定問題59緒論60MacaobridgeNanpubridgeinShanghaiSomefamousbridgesinourcountryNanjingYangtzeRiverbridgeINTRODUCTION61澳門橋上海南浦大橋我國著名橋梁南京長江大橋緒論62INTRODUCTION63緒論64INTRODUCTION65緒論66MakeholeplatformforoceanpetroleumINTRODUCTION67海洋石油鉆井平臺緒論

§0-3THEPROPERTIESANDTHEFUNDAMENTAL ASSUMPTIONOFTHESOLIDDEFORMABLEBODIES

681.Continuity:Thematerialofasoliddeformablebodyiscontinuouslydistributedoveritsvolumesothattherearenotanycracks,defectsorholesetc.

2.Homogeneity:Thematerialofthesoliddeformablebodyishomogeneouslydistributedoveritsvolumesothatthesmallestelementcutfromthebodypossessesthesamespecificmechanicalpropertiesasthebody.

3.Isotropy:Themechanicalpropertiesarethesameinalldirectionsatapoint.materialwiththispropertyiscalledisotropymaterial.Materialthatthemechanicalpropertiesaredifferentinalldirectionsatapointiscalledanisotropymaterial.

4.Smalldeformations:Thedeformationsforasoliddeformablebodycausedbyexternalforcesareverysmallcomparedwiththedimensionsofthebody.Thuswhenwestudytheequilibriumandmotionofthesoliddeformablebody,thedeformationofthebodymaybeneglected.

INTRODUCTION§0-3可變形固體的性質及其基本假設

69

一、連續性假設:物質密實地充滿物體所在空間,毫無空隙。

(可用微積分數學工具)

二、均勻性假設:物體內,各處的力學性質完全相同。

三、各向同性假設:組成物體的材料沿各方向的力學性質完全

相同。(這樣的材料稱為各向同性材料;沿各方向的力學

性質不同的材料稱為各向異性材料。)

四、小變形假設:材料力學所研究的構件在載荷作用下的變形

與原始尺寸相比甚小,故對構件進行受力分析時可忽略其

變形。

緒論70§0-4

BASICTYPESOFDEFORMATIONSOFRODINTRODUCTION

CombinedLoadinganddeformation

Content

Types

Loadingcharacteristics

Deformationcharacteristics

AxialTension

Shear

Torsion

Bending

71§0-4桿件變形的基本形式緒論組合受力與變形

內容種類

外力特點

變形特點軸向拉伸

及壓縮剪切扭轉平面彎曲2

軸向拉伸和壓縮§1–1

CONCEPTSANDPRACTICALEXAMPLESOF AXIALTENSIONANDCOMPRESSIONCharacteristicoftheexternalforce:Theactinglineoftheresultantofexternalforcesiscoincidedwiththeaxisoftherod.1、ConceptsCharacteristicofthedeformation:Deformationoftherod

ismainlyelongationorcontractionalongtheaxisoftherodandcompaniedwithlateralreductionorenlargement.Axialtension:Deformationoftherodisaxialelongationandlateralshortening.Axialcompression:Deformationoftherodisaxialshorteningandlateralenlargement.AXIALTENSIONANDCOMPRESSION574拉壓§1–1軸向拉壓的概念及實例軸向拉壓的外力特點:外力的合力作用線與桿的軸線重合。一、概念軸向拉壓的變形特點:桿的變形主要是軸向伸縮,伴隨橫向縮擴。軸向拉伸:桿的變形是軸向伸長,橫向縮短。軸向壓縮:桿的變形是軸向縮短,橫向變粗。Inaxialcompression,thecorrespondingforceiscalledcompressiveforce.Inaxialtension,thecorrespondingforceiscalledtensileforce.MechanicalmodelsareshowninthefiguresAXIALTENSIONANDCOMPRESSION776拉壓軸向壓縮,對應的力稱為壓力。軸向拉伸,對應的力稱為拉力。力學模型如圖Practicalexamplesinengineering2、AXIALTENSIONANDCOMPRESSION978拉壓工程實例二、AXIALTENSIONANDCOMPRESSION1180拉壓1、Internalforce

Internalforceistheresultantofinternalforces,whichisactingmutuallybetweentwoneighbourpartsinsidethebody,causedbytheexternalforces.

§1–2

INTERNALFORCE、METHODOFSECTION、AXIAL FORCEANDITSDIAGRAMAXIALTENSIONANDCOMPRESSION1382拉壓一、內力

指由外力作用所引起的、物體內相鄰部分之間分布內力系的合成(附加內力)。§1–2內力·截面法·軸力及軸力圖2、Methodofsection·axialforce

Calculationoftheinternalforcesisthefoundationtoanalyzetheproblemsofstrength、rigidity、stabilityetc.Thegeneralmethodtodetermineinternalforcesisthemethodofsection.1).Basicstepsofthemethodofsection:①Cutoff:Assumetoseparatetherodintotwodistinctpartsinthesectioninwhichtheinternalforcesaretobedetermined.②Substitute:Takearbitrarypartandsubstitutetheactionofanotherpartonitbythecorrespondinginternalforceinthecut-offsection.③Equilibrium:Setupequilibriumequationsfortheremainedpartanddeterminetheunknowninternalforcesaccordingtotheexternalforcesactedonit.(Heretheinternalforcesinthecut-offsectionaretheexternalforcesfortheremainedpart)AXIALTENSIONANDCOMPRESSION1584拉壓二、截面法·軸力

內力的計算是分析構件強度、剛度、穩定性等問題的基礎。求內力的一般方法是截面法。1.截面法的基本步驟:①截開:在所求內力的截面處,假想地用截面將桿件一分為二。②代替:任取一部分,其棄去部分對留下部分的作用,用作用在截開面上相應的內力(力或力偶)代替。③平衡:對留下的部分建立平衡方程,根據其上的已知外力來計算桿在截開面上的未知內力(此時截開面上的內力對所留部分而言是外力)。2.Axialforce—internalforceoftherodinaxialtensionorcompression,designatedbyN.Suchas:DetermineNbythemethodofsection.APPPANSimplesketchAPPCutoff::Substitute:Equilibrium:AXIALTENSIONANDCOMPRESSION1786拉壓2.軸力——軸向拉壓桿的內力,用N表示。例如:截面法求N。

APP簡圖APP截開:代替:平衡:PAN①Reflectedthevarietyrelationbetweenthecorrespondingaxialforceandthepositionofthesection.②Findoutvalueofthemaximumaxialforceandthepositionofthesectioninwhichthemaximumaxialforceact.Thatistodeterminethepositionofthecriticalsectionandsupplytheinformationforthecalculationofstrength.3、Diagramoftheaxialforce—sketchexpressionofN(x)3).Signconventionsfortheaxialforce:axialforceN(tensileforce)ispositivewhenitsdirectionpointtotheoutwarddirectionofthenormallineofthesection,(compressiveforce)negativeinward

N>0NNN<0NNxNP+meaningAXIALTENSIONANDCOMPRESSION1988①反映出軸力與橫截面位置變化關系,較直觀;②確定出最大軸力的數值及其所在橫截面的位置,即確定危險截面位置,為強度計算提供依據。拉壓三、軸力圖——N(x)的圖象表示。3.軸力的正負規定:

N

與外法線同向,為正軸力(拉力)N與外法線反向,為負軸力(壓力)N>0NNN<0NNNxP+意義Example1Theforceswithmagnitudes

5P、8P、4PandPact

respectivelyatpointsA、B、C、Doftherod.Theirdirectionsareshowninthefigure.Trytoplotthediagramoftheaxialforceoftherod.Solution:DeterminetheinternalforceN1insegmentOA.Takethefreebodyasshowninthefigure.ABCDPAPBPCPDOABCDPAPBPCPDN1AXIALTENSIONANDCOMPRESSION2190拉壓[例1]圖示桿的A、B、C、D點分別作用著大小為5P、8P、4P、

P

的力,方向如圖,試畫出桿的軸力圖。解:求OA段內力N1:設置截面如圖ABCDPAPBPCPDOABCDPAPBPCPDN1Similarly,wegettheinternalforcesinsegmentAB、BC、CD.Theyarerespectively:N2=–3P

N3=5PN4=PThediagramoftheaxialforceisshownintherightfigure.BCDPBPCPDN2CDPCPDN3DPDN4Nx2P3P5PP++–AXIALTENSIONANDCOMPRESSION2392拉壓同理,求得AB、BC、CD段內力分別為:N2=–3P

N3=5PN4=P軸力圖如右圖BCDPBPCPDN2CDPCPDN3DPDN4Nx2P3P5PP++–Simplemethodtoplotthediagramofaxialforce:Fromthelefttotheright:Characteristicofthediagramoftheaxialforce:Valueofsuddenchange=concentratedloadIfmeetingtheforcePtotheleft

,theincreaseoftheaxialforceNispositive;Ifmeetingtheforcetotheright

,theincreaseoftheaxialforceNisnegative.5kN8kN3kN+–3kN5kN8kNAXIALTENSIONANDCOMPRESSION2594拉壓軸力(圖)的簡便求法:自左向右:軸力圖的特點:突變值=集中載荷遇到向左的P

,軸力N增量為正;遇到向右的P

,軸力N增量為負。5kN8kN3kN+–3kN5kN8kNSolution:Thefreeendoftherodistheoriginofthecoordinateandcoordinatextotherightispositive.Takethesegmentoflengthxontheleftofpointx,itsinternalforceis

qK

LxOExample2Lengthoftherodshowninthefigureis

L.Distributedforceq=kxisactedonit,directionoftheforceisshowninthefigure.Trytoplotthediagramofaxialforceofthetherod.Lq(x)N(x)xq(x)NxO–AXIALTENSIONANDCOMPRESSION2796拉壓解:x坐標向右為正,坐標原點在自由端。取左側x段為對象,內力N(x)為:qq

LxO[例2]圖示桿長為L,受分布力q=kx

作用,方向如圖,試畫出桿的軸力圖。Lq(x)NxO–N(x)xq(x)1、Conceptofstress

§1–3

STRESSESONTHESECTIONANDSTRENGTHCONDITIONSBringforwardtheproblem:1).Themagnitudeoftheinternalforcecannotscalethestrengthofthestructuremember.2).Strength:①Intensityofthedistributedinternalforcesinthesectionstress;

②Theload-bearingcapacityofthematerial.1).Definition:Intensityoftheinternalforceduetotheexternalforces.AXIALTENSIONANDCOMPRESSION29PPPP98拉壓一、應力的概念

§1–3截面上的應力及強度條件問題提出:1.內力大小不能衡量構件強度的大小。2.強度:①內力在截面的分布集度

應力;

②材料承受荷載的能力。1.定義:由外力引起的內力集度。PPPP

Undermostcasesdistributionoftheinternalforceinsideengineeringmembersisnotuniform.Definitionofintensityisneitheraccurateandimportantbecausebreakageorfailureoftenbeginsfromthepointatwhichintensityoftheinternalforceismaximum.

P

AM①Averagestress:②Wholestress(sumstress):2).Expressionofstress:AXIALTENSIONANDCOMPRESSION31100拉壓

工程構件,大多數情形下,內力并非均勻分布,集度的定義不僅準確而且重要,因為“破壞”或“失效”往往從內力集度最大處開始。

P

AM①平均應力:②全應力(總應力):2.應力的表示:③Wholestressmaybedecomposedinto:p

M

a.Stressperpendiculartothesectioniscalled“normalstress”b.Stresslyinginthesectioniscalled“shearingstress”

AXIALTENSIONANDCOMPRESSION33102拉壓③全應力分解為:p

M

a.垂直于截面的應力稱為“正應力”

(NormalStress);b.位于截面內的應力稱為“剪應力”(ShearingStress)。Beforedeformation1).Experimentonthelawofdeformationandthehypothesisofplanesection:Hypothesisofplanesection:Crosssectionsremainplanesbeforeandafterdeformations.Deformationsoflongitudinalfibersarethesame

abcdAfterloadingPPd′a′c′b′2、StressinthecrosssectionoftherodintensionorcompressionAXIALTENSIONANDCOMPRESSION35104拉壓變形前1.變形規律試驗及平面假設:平面假設:原為平面的橫截面在變形后仍為平面。縱向纖維變形相同。abcd受載后PPd′a′c′b′二、拉(壓)桿橫截面上的應力Thematerialishomogeneousand,itsdeformationisuniform,sotheinternalforceisdistributeduniformly。2.Tensilestress:Normalstressduetotheaxialforces—

:distributesuniformlyinthecrosssection.Criticalsection:Thesectioninwhichinternalforceismaximumandofwhichthedimensionissmallest.Criticalpoint:Thepointatwhichthestressismaximum.3.Criticalsectionandthemaximumworkingstress:AXIALTENSIONANDCOMPRESSION37sN(x)P106拉壓均勻材料、均勻變形,內力當然均勻分布。2.拉伸應力:軸力引起的正應力——

:在橫截面上均布。危險截面:內力最大的面,截面尺寸最小的面。危險點:應力最大的點。3.危險截面及最大工作應力:sN(x)P

Straightrod、crosssectionoftherodiswithoutsuddenchange、thereisacertaindistancefromthesectiontothepointatwhichtheloadacts.4).Applicationconditionsoftheformula:6).Stressconcentration:

Stressincreasesabruptlynearthecrosssectionwithasuddenchangeindimension

5).Saint-Venantprinciple:

Distributionandmagnitudeofthestressinthesectionatacertaindistancefromthepointatwhichtheloadisactedarenotaffectedbytheactingformofexternalloads.AXIALTENSIONANDCOMPRESSION39108拉壓

直桿、桿的截面無突變、截面到載荷作用點有一定的距離。4.公式的應用條件:6.應力集中(StressConcentration):

在截面尺寸突變處,應力急劇變大。5.Saint-Venant原理:

離開載荷作用處一定距離,應力分布與大小不受外載荷作用方式的影響。SketchofSaint-Venantprincipleandstressconcentrations(Redreallinesdenotethelinebeforedeformationandreddashedlinesdenotetheshapeafterdeformation.)Sketchofdeformation:abcPPSketchofthestressdistribution:AXIALTENSIONANDCOMPRESSION41110拉壓Saint-Venant原理與應力集中示意圖(紅色實線為變形前的線,紅色虛線為紅色實線變形后的形狀。)變形示意圖:abcPP應力分布示意圖:7).Criterionofthestrengthdesign:where:[

]—allowablestress,

max–themaximumworkingstress atthecriticalpoint.②Designthedimensionofthesection:Threekindsofcalculationofstrengthmaybedoneaccordingtothecriterionofstrength:

Thatstructuremembersareensurednottobewreckedandhavecertainsafedegree.①Checkthestrength:③Determinetheallowableload:

AXIALTENSIONANDCOMPRESSION43112拉壓7.強度設計準則(StrengthDesign):其中:[

]--許用應力,

max--危險點的最大工作應力。②設計截面尺寸:依強度準則可進行三種強度計算:

保證構件不發生強度破壞并有一定安全余量的條件準則。①校核強度:③許可載荷:

Example3Acircularrodissubjectedtoatensileforce

P=25kN.Itsdiameterisd=14mmanditsallowablestressis[

]=170MPa.Trytocheckthestrengthoftherod.Solution:①Axialforce:N=P

=25kN②Stress:③Checkthestrength:④Conclusion:Thestrengthoftherodsatisfiesrequest.Therodcanworknormally.AXIALTENSIONANDCOMPRESSION45114拉壓[例3]已知一圓桿受拉力P=25kN,直徑d=14mm,許用應力

[

]=170MPa,試校核此桿是否滿足強度要求。解:①軸力:N=P

=25kN②應力:③強度校核:④結論:此桿滿足強度要求,能夠正常工作。Example4

Athree-pinhouseframeonwhichaverticaluniformload,withtheindensityintensityisq

=4.2kN/misappliedisshowninthefigure.Diameterofthesteeltensilerodintheframeisd=16mmanditsallowablestressis[

]=170MPa.Trytocheckthestrengthoftherod.AXIALTENSIONANDCOMPRESSION47Tiebar4.2m8.5m116拉壓[例4]

已知三鉸屋架如圖,承受豎向均布載荷,載荷的分布集度為:q

=4.2kN/m,屋架中的鋼拉桿直徑d=16mm,許用應力[

]=170MPa。試校核鋼拉桿的強度。鋼拉桿4.2m8.5m①DeterminethereactionsfirstaccordingtotheglobalequilibriumSolution:AXIALTENSIONANDCOMPRESSION49Tiebar8.5m4.2mRARBHA118拉壓①整體平衡求支反力解:鋼拉桿8.5m4.2mRARBHA③Stress:④Strengthcheckandconclusion:Thisrodsatisfiestherequestofstrength.Itissafe.②Determinetheaxialforceaccordingtothepartialequilibrium:

AXIALTENSIONANDCOMPRESSION51RAHARCHCN120拉壓③應力:④強度校核與結論:

此桿滿足強度要求,是安全的。②局部平衡求軸力:

HCRAHARCHCNExample5A

simplecraneisshowninthefigure.ACisarigidbeam,sumweightofthehoistandheavybodythatisliftedisP.Whatshouldbetheangle

sothattherodBDhastheminimumweight?

Theallowablestressoftherod[

]isknown.Analysis:xLhqPABCDAXIALTENSIONANDCOMPRESSION53122拉壓[例5]簡易起重機構如圖,AC為剛性梁,吊車與吊起重物總重為P,為使BD桿最輕,角

應為何值?已知BD

桿的許用應力為[

]。分析:xLhqPABCD

Thecross-sectionareaAoftherodBD:Solution:

Internalforce

N((q)oftherodBD:

TakeACasourstudyobjectasshowninthefigure.YAXAqNBDxLPABCAXIALTENSIONANDCOMPRESSION55124拉壓

BD桿橫截面面積A:解:

BD桿內力N(q):取AC為研究對象,如圖YAXAqNBDxLPABCYAXAqNBDxLPABC③DeterminetheminimumvalueofVBD

:AXIALTENSIONANDCOMPRESSION67126拉壓YAXAqNBDxLPABC③求VBD

的最小值:3、StressesintheinclinedsectionoftherodintensionorcompressionPPkka

Aa:Areaoftheinclinedsection;Pa:Internalforceintheinclinedsection.

:PkkaPaFromgeometricrelationSubstitutingitintotheaboveformulawegetSolution:Adoptthemethodofsection.Accordingtotheequilibriumequation:Pa=PthenAssumeastraightrodissubjectedtoatensileforceP.Determinethestressintheinclinedsectionk-k.

Wholestressintheinclinedsection:AXIALTENSIONANDCOMPRESSION59128拉壓三、拉(壓)桿斜截面上的應力設有一等直桿受拉力P作用。求:斜截面k-k上的應力。PPkka解:采用截面法由平衡方程:Pa=P則:Aa:斜截面面積;Pa:斜截面上內力。由幾何關系:代入上式,得:斜截面上全應力:PkkaPa

Decomposition:pa=Itindicatesthechangeofstressesindifferentsectionsthroughapoint.As

=90°,As

=0,90°,As

=0°,(Themaximumnormalstressexists inthecrosssection)As

=±45°,(Themaximumshearingstressexistsintheinclinedsectionof45°)Wholestressintheinclinedsection:AXIALTENSIONANDCOMPRESSION61PPkkaPkkapatasaa130拉壓斜截面上全應力:分解:pa=反映:通過構件上一點不同截面上應力變化情況。當

=90°時,當

=0,90°時,當

=0°時,(橫截面上存在最大正應力)當

=±45°時,(45°斜截面上剪應力達到最大)PPkkaPkkapa

atasaa2、Element:

Element—delegateofapointinsidethemember,infinitesimalgeometricbodywhichenvelopsthestudypoint.Theelementincommonuseisjusthexahedron

propertiesofanelement—a、stressisdistributeduniformlyinanarbitraryparallelarbitraryplane;b、stressesintheparallelplaneoppositeplane areequal.3、stresselementatapointMintherodintensionorcompression:

1.Stateofstressatapoint:Therearecountlesssectionsthroughapoint.Sumofstressesinthedifferentsectionthroughapointiscalledthestateofstressatthispoint.Complementary:sPMssssAXIALTENSIONANDCOMPRESSION631322、單元體:

單元體—構件內的點的代表物,是包圍被研究點的無限小的幾何體,常用的是正六面體。

單元體的性質—a、平行面上,應力均布;

b、平行面上,應力相等。3、拉壓桿內一點M

的應力單元體:

1.一點的應力狀態:過一點有無數的截面,這一點的各個截面上的應力情況,稱為這點的應力狀態。補充:拉壓sPMssssTakeafreebodyasshownintheFig.3.a

ispositive

ifitisalongcountclockwise;ta

ispositiveifitmakesthefreebodyrotateclockwise.Fromtheequilibriumofthefreebodyweget:4、Stressintheinclinedsectionoftherodintensionorcompressionssss

tasaxs0Fig.3AXIALTENSIONANDCOMPRESSION65134取分離體如圖3,a逆時針為正;ta繞研究對象順時針轉為正;由分離體平衡得:拉壓4、拉壓桿斜截面上的應力ssss

tasaxs0圖3Example6

Arod,whichthediameterd=1cmissubjectedtoatensileforceP=10kN.Determinethemaximumshearingstress,thenormalstressandshearingstressintheinclinedsectionofanangle30°aboutthecrosssection.Solution:Stressesintheinclinedsectionoftherodintensionorcompressioncanbedetermineddirectlybytheformula:AXIALTENSIONANDCOMPRESSION67136[例6]

直徑為d=1cm

桿受拉力P=10kN的作用,試求最大剪應力,并求與橫截面夾角30°的斜截面上的正應力和剪應力。解:拉壓桿斜截面上的應力,直接由公式求之:拉壓Example7

Atensilerodasshowninthefigureismadefromtwopartsgluedmutuallytogetheralong

mn.Itissubjectedtotheactionofforce

P.Assumethattheallowablenormalstressis[

]=100MPaandallowableshearingstressis[

]=50MPafortheadhesive.AreaofcrosssectionoftherodisA=4cm2.Ifstrengthoftherodiscontrolledbytheadhesivewhatistheangle

(

:between00~600)togetthelargesttensileforce?Combine(1)、(2)andget:PPmnaSolution:AXIALTENSIONANDCOMPRESSION69Pa600300B00138[例7]圖示拉桿沿mn由兩部分膠合而成,受力P,設膠合面的許用拉應力為[

]=100MPa

;許用剪應力為[

]=50MPa

,并設桿的強度由膠合面控制,桿的橫截面積為A=4cm2,試問:為使桿承受最大拉力,

角值應為多大?(規定:

在0~60度之間)。聯立(1)、(2)得:拉壓PPmna解:Pa600300B00Thecurvesofformula(1)and、(2)areshownintheTig.(2).ObviouslythestrengthoftherodontheleftofpointBiscontrolledbythenormalstress,thatontherightofpointBiscontrolledbytheshearingstress.Asa=60°,fromformula(2)wecangetSolution:Atthepointofintersectionofcurves(1)and(2):Discussion:AsAXIALTENSIONANDCOMPRESSION71Pa600300B100140(1)、(2)式的曲線如圖(2),顯然,B點左側由正應力控制桿的強度,B點右側由剪應力控制桿的強度,當a=60°時,由(2)式得解(1)、(2)曲線交點處:拉壓討論:若Pa600300B100

1)、Thewholelongitudinal deformationoftherod:

3)、Averagestain:

2)、Strain:lineardeformationperunitlength.1、Deformationandstrainoftherodintensionorcompression

§1-4

DEFORMATIONOFTHERODINAXIALTENSION ANDCOMPRESSIONLAWOFELASTICITY

AXIALTENSIONANDCOMPRESSION73abcdLCrosssection1421、桿的縱向總變形:3、平均線應變:2、線應變:單位長度的線變形。一、拉壓桿的變形及應變§1-4拉壓桿的變形

彈性定律拉壓abcdL4、Longitudinalstrainatpointx:6、Lateralstrainatpointx:5、Lateraldeformationoftherod:PPd′a′c′b′L1AXIALTENSIONANDCOMPRESSION751444、x點處的縱向線應變:6、x點處的橫向線應變:5、桿的橫向變形:拉壓PPd′a′c′b′L12、Elasticlawoftherodintensionorcompression

1)、Caseofequalinternalforces

2)、Caseofvariableinternalforces

Wheninternalforcesinnsegmentsareconstant

※“EA”iscalledtheaxialrigidityoftherodintensionorcompression.

PPN(x)dxxAXIALTENSIONANDCOMPRESSION77146二、拉壓桿的彈性定律1、等內力拉壓桿的彈性定律2、變內力拉壓桿的彈性定律內力在

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論