




版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
吉林省白城市大安市第二中學2024屆高三5月聯(lián)考數(shù)學試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知函數(shù)在區(qū)間上恰有四個不同的零點,則實數(shù)的取值范圍是()A. B. C. D.2.已知復數(shù),,則()A. B. C. D.3.若復數(shù)為虛數(shù)單位在復平面內(nèi)所對應的點在虛軸上,則實數(shù)a為()A. B.2 C. D.4.函數(shù)的圖象與軸交點的橫坐標構成一個公差為的等差數(shù)列,要得到函數(shù)的圖象,只需將的圖象()A.向左平移個單位 B.向右平移個單位C.向左平移個單位 D.向右平移個單位5.如圖網(wǎng)格紙上小正方形的邊長為,粗線畫出的是某幾何體的三視圖,則該幾何體的所有棱中最長棱的長度為()A. B. C. D.6.若復數(shù)(為虛數(shù)單位),則()A. B. C. D.7.公差不為零的等差數(shù)列{an}中,a1+a2+a5=13,且a1、a2、a5成等比數(shù)列,則數(shù)列{an}的公差等于()A.1 B.2 C.3 D.48.如圖,長方體中,,,點T在棱上,若平面.則()A.1 B. C.2 D.9.已知復數(shù)滿足,則=()A. B.C. D.10.已知是過拋物線焦點的弦,是原點,則()A.-2 B.-4 C.3 D.-311.空間點到平面的距離定義如下:過空間一點作平面的垂線,這個點和垂足之間的距離叫做這個點到這個平面的距離.已知平面,,兩兩互相垂直,點,點到,的距離都是3,點是上的動點,滿足到的距離與到點的距離相等,則點的軌跡上的點到的距離的最小值是()A. B.3 C. D.12.已知集合,,,則集合()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知橢圓C:1(a>b>0)的左、右焦點分別為F1,F(xiàn)2,橢圓的焦距為2c,過C外一點P(c,2c)作線段PF1,PF2分別交橢圓C于點A、B,若|PA|=|AF1|,則_____.14.的展開式中的系數(shù)為__________.15.若雙曲線的離心率為,則雙曲線的漸近線方程為______.16.在平面直角坐標系xOy中,已知A0,a,B3,a+4三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù),,設.(1)當時,求函數(shù)的單調(diào)區(qū)間;(2)設方程(其中為常數(shù))的兩根分別為,,證明:.(注:是的導函數(shù))18.(12分)在極坐標系中,曲線的極坐標方程為(1)求曲線與極軸所在直線圍成圖形的面積;(2)設曲線與曲線交于,兩點,求.19.(12分)設點,動圓經(jīng)過點且和直線相切.記動圓的圓心的軌跡為曲線.(1)求曲線的方程;(2)過點的直線與曲線交于、兩點,且直線與軸交于點,設,,求證:為定值.20.(12分)如圖,在三棱錐中,,是的中點,點在上,平面,平面平面,為銳角三角形,求證:(1)是的中點;(2)平面平面.21.(12分)某精密儀器生產(chǎn)車間每天生產(chǎn)個零件,質(zhì)檢員小張每天都會隨機地從中抽取50個零件進行檢查是否合格,若較多零件不合格,則需對其余所有零件進行檢查.根據(jù)多年的生產(chǎn)數(shù)據(jù)和經(jīng)驗,這些零件的長度服從正態(tài)分布(單位:微米),且相互獨立.若零件的長度滿足,則認為該零件是合格的,否則該零件不合格.(1)假設某一天小張抽查出不合格的零件數(shù)為,求及的數(shù)學期望;(2)小張某天恰好從50個零件中檢查出2個不合格的零件,若以此頻率作為當天生產(chǎn)零件的不合格率.已知檢查一個零件的成本為10元,而每個不合格零件流入市場帶來的損失為260元.假設充分大,為了使損失盡量小,小張是否需要檢查其余所有零件,試說明理由.附:若隨機變量服從正態(tài)分布,則.22.(10分)2018年反映社會現(xiàn)實的電影《我不是藥神》引起了很大的轟動,治療特種病的創(chuàng)新藥研發(fā)成了當務之急.為此,某藥企加大了研發(fā)投入,市場上治療一類慢性病的特效藥品的研發(fā)費用(百萬元)和銷量(萬盒)的統(tǒng)計數(shù)據(jù)如下:研發(fā)費用(百萬元)2361013151821銷量(萬盒)1122.53.53.54.56(1)求與的相關系數(shù)精確到0.01,并判斷與的關系是否可用線性回歸方程模型擬合?(規(guī)定:時,可用線性回歸方程模型擬合);(2)該藥企準備生產(chǎn)藥品的三類不同的劑型,,,并對其進行兩次檢測,當?shù)谝淮螜z測合格后,才能進行第二次檢測.第一次檢測時,三類劑型,,合格的概率分別為,,,第二次檢測時,三類劑型,,合格的概率分別為,,.兩次檢測過程相互獨立,設經(jīng)過兩次檢測后,,三類劑型合格的種類數(shù)為,求的數(shù)學期望.附:(1)相關系數(shù)(2),,,.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解題分析】
函數(shù)的零點就是方程的解,設,方程可化為,即或,求出的導數(shù),利用導數(shù)得出函數(shù)的單調(diào)性和最值,由此可根據(jù)方程解的個數(shù)得出的范圍.【題目詳解】由題意得有四個大于的不等實根,記,則上述方程轉(zhuǎn)化為,即,所以或.因為,當時,,單調(diào)遞減;當時,,單調(diào)遞增;所以在處取得最小值,最小值為.因為,所以有兩個符合條件的實數(shù)解,故在區(qū)間上恰有四個不相等的零點,需且.故選:A.【題目點撥】本題考查復合函數(shù)的零點.考查轉(zhuǎn)化與化歸思想,函數(shù)零點轉(zhuǎn)化為方程的解,方程的解再轉(zhuǎn)化為研究函數(shù)的性質(zhì),本題考查了學生分析問題解決問題的能力.2、B【解題分析】分析:利用的恒等式,將分子、分母同時乘以,化簡整理得詳解:,故選B點睛:復數(shù)問題是高考數(shù)學中的常考問題,屬于得分題,主要考查的方面有:復數(shù)的分類、復數(shù)的幾何意義、復數(shù)的模、共軛復數(shù)以及復數(shù)的乘除運算,在運算時注意符號的正、負問題.3、D【解題分析】
利用復數(shù)代數(shù)形式的乘除運算化簡,再由實部為求得值.【題目詳解】解:在復平面內(nèi)所對應的點在虛軸上,,即.故選D.【題目點撥】本題考查復數(shù)代數(shù)形式的乘除運算,考查復數(shù)的代數(shù)表示法及其幾何意義,是基礎題.4、A【解題分析】依題意有的周期為.而,故應左移.5、C【解題分析】
利用正方體將三視圖還原,觀察可得最長棱為AD,算出長度.【題目詳解】幾何體的直觀圖如圖所示,易得最長的棱長為故選:C.【題目點撥】本題考查了三視圖還原幾何體的問題,其中利用正方體作襯托是關鍵,屬于基礎題.6、B【解題分析】
根據(jù)復數(shù)的除法法則計算,由共軛復數(shù)的概念寫出.【題目詳解】,,故選:B【題目點撥】本題主要考查了復數(shù)的除法計算,共軛復數(shù)的概念,屬于容易題.7、B【解題分析】
設數(shù)列的公差為.由,成等比數(shù)列,列關于的方程組,即求公差.【題目詳解】設數(shù)列的公差為,①.成等比數(shù)列,②,解①②可得.故選:.【題目點撥】本題考查等差數(shù)列基本量的計算,屬于基礎題.8、D【解題分析】
根據(jù)線面垂直的性質(zhì),可知;結合即可證明,進而求得.由線段關系及平面向量數(shù)量積定義即可求得.【題目詳解】長方體中,,點T在棱上,若平面.則,則,所以,則,所以,故選:D.【題目點撥】本題考查了直線與平面垂直的性質(zhì)應用,平面向量數(shù)量積的運算,屬于基礎題.9、B【解題分析】
利用復數(shù)的代數(shù)運算法則化簡即可得到結論.【題目詳解】由,得,所以,.故選:B.【題目點撥】本題考查復數(shù)代數(shù)形式的乘除運算,考查復數(shù)的基本概念,屬于基礎題.10、D【解題分析】
設,,設:,聯(lián)立方程得到,計算得到答案.【題目詳解】設,,故.易知直線斜率不為,設:,聯(lián)立方程,得到,故,故.故選:.【題目點撥】本題考查了拋物線中的向量的數(shù)量積,設直線為可以簡化運算,是解題的關鍵.11、D【解題分析】
建立平面直角坐標系,將問題轉(zhuǎn)化為點的軌跡上的點到軸的距離的最小值,利用到軸的距離等于到點的距離得到點軌跡方程,得到,進而得到所求最小值.【題目詳解】如圖,原題等價于在直角坐標系中,點,是第一象限內(nèi)的動點,滿足到軸的距離等于點到點的距離,求點的軌跡上的點到軸的距離的最小值.設,則,化簡得:,則,解得:,即點的軌跡上的點到的距離的最小值是.故選:.【題目點撥】本題考查立體幾何中點面距離最值的求解,關鍵是能夠準確求得動點軌跡方程,進而根據(jù)軌跡方程構造不等關系求得最值.12、D【解題分析】
根據(jù)集合的混合運算,即可容易求得結果.【題目詳解】,故可得.故選:D.【題目點撥】本題考查集合的混合運算,屬基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解題分析】
根據(jù)條件可得判斷OA∥PF2,且|PF2|=2|OA|,從而得到點A為橢圓上頂點,則有b=c,解出B的坐標即可得到比值.【題目詳解】因為|PA|=|AF1|,所以點A是線段PF1的中點,又因為點O為線段F1F2的中點,所以OA∥PF2,且|PF2|=2|OA|,因為點P(c,2c),所以PF2⊥x軸,則|PF2|=2c,所以OA⊥x軸,則點A為橢圓上頂點,所以|OA|=b,則2b=2c,所以b=c,ac,設B(c,m)(m>0),則,解得mc,所以|BF2|c,則.故答案為:2.【題目點撥】本題考查橢圓的基本性質(zhì),考查直線位置關系的判斷,方程思想,屬于中檔題.14、3【解題分析】
分別用1和進行分類討論即可【題目詳解】當?shù)谝粋€因式取1時,第二個因式應取含的項,則對應系數(shù)為:;當?shù)谝粋€因式取時,第二個因式應取含的項,則對應系數(shù)為:;故的展開式中的系數(shù)為.故答案為:3【題目點撥】本題考查二項式定理中具體項對應系數(shù)的求解,屬于基礎題15、【解題分析】
利用,得到的關系式,然后代入雙曲線的漸近線方程即可求解.【題目詳解】因為雙曲線的離心率為,所以,即,因為雙曲線的漸近線方程為,所以雙曲線的漸近線方程為.故答案為:【題目點撥】本題考查雙曲線的幾何性質(zhì);考查運算求解能力;熟練掌握雙曲線的幾何性質(zhì)是求解本題的關鍵;屬于基礎題.16、(-53,【解題分析】
求出AB的長度,直線方程,結合△ABC的面積為5,轉(zhuǎn)化為圓心到直線的距離進行求解即可.【題目詳解】解:AB的斜率k=a+4-a3-0=4=3設△ABC的高為h,則∵△ABC的面積為5,∴S=12|AB|h=即h=2,直線AB的方程為y﹣a=43x,即4x﹣3y+3若圓x2+y2=9上有且僅有四個不同的點C,則圓心O到直線4x﹣3y+3a=0的距離d=|3a|則應該滿足d<R﹣h=3﹣2=1,即|3a|5得|3a|<5得-53<故答案為:(-53,【題目點撥】本題主要考查直線與圓的位置關系的應用,求出直線方程和AB的長度,轉(zhuǎn)化為圓心到直線的距離是解決本題的關鍵.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)在上單調(diào)遞增,在上單調(diào)遞減.(2)見解析【解題分析】
(1)求出導函數(shù),由確定增區(qū)間,由確定減區(qū)間;(2)求出含有參數(shù)的,再求出,由的兩根是,得,計算,代入后可得結論.【題目詳解】解:,函數(shù)的定義域為,.(1)當時,,由得,由得,故函數(shù)在上單調(diào)遞增,在上單調(diào)遞減.(2)證明:由條件可得,,,方程的兩根分別為,,,且,可得..【題目點撥】本題考查用導數(shù)研究函數(shù)的單調(diào)性,考查導數(shù)的運算、方程根的知識.在可導函數(shù)中一般由確定增區(qū)間,由確定減區(qū)間.18、(1);(2)【解題分析】
(1)利用互化公式,將曲線的極坐標方程化為直角坐標方程,得出曲線與極軸所在直線圍成的圖形是一個半徑為1的圓周及一個兩直角邊分別為1與的直角三角形,即可求出面積;(2)聯(lián)立方程組,分別求出和的坐標,即可求出.【題目詳解】解:(1)由于的極坐標方程為,根據(jù)互化公式得,曲線的直角坐標方程為:當時,,當時,,則曲線與極軸所在直線圍成的圖形,是一個半徑為1的圓周及一個兩直角邊分別為1與的直角三角形,∴圍成圖形的面積.(2)由得,其直角坐標為,化直角坐標方程為,化直角坐標方程為,∴,∴.【題目點撥】本題考查利用互化公式將極坐標方程化為直角坐標方程,以及聯(lián)立方程組求交點坐標,考查計算能力.19、(1);(2)見解析.【解題分析】
(1)已知點軌跡是以為焦點,直線為準線的拋物線,由此可得曲線的方程;(2)設直線方程為,,則,設,由直線方程與拋物線方程聯(lián)立消元應用韋達定理得,,由,,用橫坐標表示出,然后計算,并代入,可得結論.【題目詳解】(1)設動圓圓心,由拋物線定義知:點軌跡是以為焦點,直線為準線的拋物線,設其方程為,則,解得.∴曲線的方程為;(2)證明:設直線方程為,,則,設,由得,①,則,,②,由,,得,,整理得,,∴,代入②得:.【題目點撥】本題考查求曲線方程,考查拋物線的定義,考查直線與拋物線相交問題中的定值問題.解題方法是設而不求的思想方法,即設交點坐標,設直線方程,直線方程代入拋物線(或圓錐曲線)方程得一元二次方程,應用韋達定理得,,代入題中其他條件所求式子中化簡變形.20、(1)證明見解析;(2)證明見解析;【解題分析】
(1)推導出,由是的中點,能證明是有中點.(2)作于點,推導出平面,從而,由,能證明平面,由此能證明平面平面.【題目詳解】證明:(1)在三棱錐中,平面,平面平面,平面,,在中,是的中點,是有中點.(2)在三棱錐中,是銳角三角形,在中,可作于點,平面平面,平面平面,平面,平面,平面,,,,平面,平面,平面
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 元旦的快樂故事分享
- 醫(yī)院護理安全管理與保障
- 員工培訓及學歷提升計劃
- 如何制定房地產(chǎn)項目的戰(zhàn)略目標
- 腹腔鏡下輸尿管鏡手術技巧分享
- 春節(jié)小精靈淡藍色的卡通插畫
- BIM在環(huán)境保護工程中的應用
- 保險公司母親節(jié)策劃方案
- 保險公司臘八節(jié)活動方案
- 保險公司門店活動方案
- 文本無創(chuàng)呼吸機
- 六合散-春腳集卷二-方劑加減變化匯總
- 水下混凝土灌注記錄(含計算公式新表格)
- 水質(zhì)監(jiān)測系統(tǒng)建設方案
- 小學四年級英語下冊期末的復習計劃(精選6篇)
- 趣味英語(課堂PPT)
- NBT-31084-2016風力發(fā)電場項目建設工程驗收規(guī)程(A.監(jiān)理基本用表)
- 國電智深DCS系統(tǒng)培訓PPT課件
- 混凝土結構及砌體結構課程設計(共18頁)
- 家長在高考動員會講話3篇
- 銑床數(shù)控課程設計(共39頁)
評論
0/150
提交評論