




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2024屆北京市對外經貿大學附屬中學高三教學質量檢測試題(一)數學試題試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.下圖為一個正四面體的側面展開圖,為的中點,則在原正四面體中,直線與直線所成角的余弦值為()A. B.C. D.2.正四棱錐的五個頂點在同一個球面上,它的底面邊長為,側棱長為,則它的外接球的表面積為()A. B. C. D.3.以下四個命題:①兩個隨機變量的線性相關性越強,相關系數的絕對值越接近1;②在回歸分析中,可用相關指數的值判斷擬合效果,越小,模型的擬合效果越好;③若數據的方差為1,則的方差為4;④已知一組具有線性相關關系的數據,其線性回歸方程,則“滿足線性回歸方程”是“,”的充要條件;其中真命題的個數為()A.4 B.3 C.2 D.14.已知直線:與圓:交于,兩點,與平行的直線與圓交于,兩點,且與的面積相等,給出下列直線:①,②,③,④.其中滿足條件的所有直線的編號有()A.①② B.①④ C.②③ D.①②④5.命題:存在實數,對任意實數,使得恒成立;:,為奇函數,則下列命題是真命題的是()A. B. C. D.6.設,,則()A. B.C. D.7.函數在上單調遞減,且是偶函數,若,則的取值范圍是()A.(2,+∞) B.(﹣∞,1)∪(2,+∞)C.(1,2) D.(﹣∞,1)8.在展開式中的常數項為A.1 B.2 C.3 D.79.的內角的對邊分別為,已知,則角的大小為()A. B. C. D.10.函數f(x)=的圖象大致為()A. B.C. D.11.等差數列的前項和為,若,,則數列的公差為()A.-2 B.2 C.4 D.712.已知向量,夾角為,,,則()A.2 B.4 C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知,滿足約束條件,則的最小值為__________.14.已知函數,若,則實數的取值范圍為__________.15.已知函數為奇函數,則______.16.已知向量與的夾角為,||=||=1,且⊥(λ),則實數_____.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在四棱錐中,四邊形為正方形,平面,點是棱的中點,,.(1)若,證明:平面平面;(2)若三棱錐的體積為,求二面角的余弦值.18.(12分)表示,中的最大值,如,己知函數,.(1)設,求函數在上的零點個數;(2)試探討是否存在實數,使得對恒成立?若存在,求的取值范圍;若不存在,說明理由.19.(12分)新型冠狀病毒肺炎疫情發生以來,電子購物平臺成為人們的熱門選擇.為提高市場銷售業績,某公司設計了一套產品促銷方案,并在某地區部分營銷網點進行試點.運作一年后,對“采用促銷”和“沒有采用促銷”的營銷網點各選取了50個,對比上一年度的銷售情況,分別統計了它們的年銷售總額,并按年銷售總額增長的百分點分成5組:,分別統計后制成如圖所示的頻率分布直方圖,并規定年銷售總額增長10個百分點及以上的營銷網點為“精英店”.(1)請你根據題中信息填充下面的列聯表,并判斷是否有的把握認為“精英店與采用促銷活動有關”;采用促銷沒有采用促銷合計精英店非精英店合計5050100(2)某“精英店”為了創造更大的利潤,通過分析上一年度的售價(單位:元)和日銷量(單位:件)的一組數據后決定選擇作為回歸模型進行擬合.具體數據如下表,表中的:①根據上表數據計算的值;②已知該公司成本為10元/件,促銷費用平均5元/件,根據所求出的回歸模型,分析售價定為多少時日利潤可以達到最大.附①:附②:對應一組數據,其回歸直線的斜率和截距的最小二乘法估計分別為.20.(12分)已知函數(,為自然對數的底數),.(1)若有兩個零點,求實數的取值范圍;(2)當時,對任意的恒成立,求實數的取值范圍.21.(12分)在直角坐標系中,已知點,若以線段為直徑的圓與軸相切.(1)求點的軌跡的方程;(2)若上存在兩動點(A,B在軸異側)滿足,且的周長為,求的值.22.(10分)已知橢圓經過點,離心率為.(1)求橢圓的方程;(2)過點的直線交橢圓于、兩點,若,在線段上取點,使,求證:點在定直線上.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解題分析】
將正四面體的展開圖還原為空間幾何體,三點重合,記作,取中點,連接,即為與直線所成的角,表示出三角形的三條邊長,用余弦定理即可求得.【題目詳解】將展開的正四面體折疊,可得原正四面體如下圖所示,其中三點重合,記作:則為中點,取中點,連接,設正四面體的棱長均為,由中位線定理可得且,所以即為與直線所成的角,,由余弦定理可得,所以直線與直線所成角的余弦值為,故選:C.【題目點撥】本題考查了空間幾何體中異面直線的夾角,將展開圖折疊成空間幾何體,余弦定理解三角形的應用,屬于中檔題.2、C【解題分析】
如圖所示,在平面的投影為正方形的中心,故球心在上,計算長度,設球半徑為,則,解得,得到答案.【題目詳解】如圖所示:在平面的投影為正方形的中心,故球心在上,,故,,設球半徑為,則,解得,故.故選:.【題目點撥】本題考查了四棱錐的外接球問題,意在考查學生的空間想象能力和計算能力.3、C【解題分析】
①根據線性相關性與r的關系進行判斷,
②根據相關指數的值的性質進行判斷,
③根據方差關系進行判斷,
④根據點滿足回歸直線方程,但點不一定就是這一組數據的中心點,而回歸直線必過樣本中心點,可進行判斷.【題目詳解】①若兩個隨機變量的線性相關性越強,則相關系數r的絕對值越接近于1,故①正確;
②用相關指數的值判斷模型的擬合效果,越大,模型的擬合效果越好,故②錯誤;
③若統計數據的方差為1,則的方差為,故③正確;
④因為點滿足回歸直線方程,但點不一定就是這一組數據的中心點,即,不一定成立,而回歸直線必過樣本中心點,所以當,時,點必滿足線性回歸方程;因此“滿足線性回歸方程”是“,”必要不充分條件.故④錯誤;
所以正確的命題有①③.
故選:C.【題目點撥】本題考查兩個隨機變量的相關性,擬合性檢驗,兩個線性相關的變量間的方差的關系,以及兩個變量的線性回歸方程,注意理解每一個量的定義,屬于基礎題.4、D【解題分析】
求出圓心到直線的距離為:,得出,根據條件得出到直線的距離或時滿足條件,即可得出答案.【題目詳解】解:由已知可得:圓:的圓心為(0,0),半徑為2,則圓心到直線的距離為:,∴,而,與的面積相等,∴或,即到直線的距離或時滿足條件,根據點到直線距離可知,①②④滿足條件.故選:D.【題目點撥】本題考查直線與圓的位置關系的應用,涉及點到直線的距離公式.5、A【解題分析】
分別判斷命題和的真假性,然后根據含有邏輯聯結詞命題的真假性判斷出正確選項.【題目詳解】對于命題,由于,所以命題為真命題.對于命題,由于,由解得,且,所以是奇函數,故為真命題.所以為真命題.、、都是假命題.故選:A【題目點撥】本小題主要考查誘導公式,考查函數的奇偶性,考查含有邏輯聯結詞命題真假性的判斷,屬于基礎題.6、D【解題分析】
由不等式的性質及換底公式即可得解.【題目詳解】解:因為,,則,且,所以,,又,即,則,即,故選:D.【題目點撥】本題考查了不等式的性質及換底公式,屬基礎題.7、B【解題分析】
根據題意分析的圖像關于直線對稱,即可得到的單調區間,利用對稱性以及單調性即可得到的取值范圍。【題目詳解】根據題意,函數滿足是偶函數,則函數的圖像關于直線對稱,若函數在上單調遞減,則在上遞增,所以要使,則有,變形可得,解可得:或,即的取值范圍為;故選:B.【題目點撥】本題考查偶函數的性質,以及函數單調性的應用,有一定綜合性,屬于中檔題。8、D【解題分析】
求出展開項中的常數項及含的項,問題得解。【題目詳解】展開項中的常數項及含的項分別為:,,所以展開式中的常數項為:.故選:D【題目點撥】本題主要考查了二項式定理中展開式的通項公式及轉化思想,考查計算能力,屬于基礎題。9、A【解題分析】
先利用正弦定理將邊統一化為角,然后利用三角函數公式化簡,可求出解B.【題目詳解】由正弦定理可得,即,即有,因為,則,而,所以.故選:A【題目點撥】此題考查了正弦定理和三角函數的恒等變形,屬于基礎題.10、D【解題分析】
根據函數為非偶函數可排除兩個選項,再根據特殊值可區分剩余兩個選項.【題目詳解】因為f(-x)=≠f(x)知f(x)的圖象不關于y軸對稱,排除選項B,C.又f(2)==-<0.排除A,故選D.【題目點撥】本題主要考查了函數圖象的對稱性及特值法區分函數圖象,屬于中檔題.11、B【解題分析】
在等差數列中由等差數列公式與下標和的性質求得,再由等差數列通項公式求得公差.【題目詳解】在等差數列的前項和為,則則故選:B【題目點撥】本題考查等差數列中求由已知關系求公差,屬于基礎題.12、A【解題分析】
根據模長計算公式和數量積運算,即可容易求得結果.【題目詳解】由于,故選:A.【題目點撥】本題考查向量的數量積運算,模長的求解,屬綜合基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解題分析】
作出約束條件所表示的可行域,利用直線截距的幾何意義,即可得答案.【題目詳解】畫出可行域易知在點處取最小值為.故答案為:【題目點撥】本題考查簡單線性規劃的最值,考查數形結合思想,考查運算求解能力,屬于基礎題.14、【解題分析】
畫圖分析可得函數是偶函數,且在上單調遞減,利用偶函數性質和單調性可解.【題目詳解】作出函數的圖如下所示,觀察可知,函數為偶函數,且在上單調遞增,在上單調遞減,故,故實數的取值范圍為.故答案為:【題目點撥】本題考查利用函數奇偶性及單調性解不等式.函數奇偶性的常用結論:(1)如果函數是偶函數,那么.(2)奇函數在兩個對稱的區間上具有相同的單調性;偶函數在兩個對稱的區間上具有相反的單調性.15、【解題分析】
利用奇函數的定義得出,結合對數的運算性質可求得實數的值.【題目詳解】由于函數為奇函數,則,即,,整理得,解得.當時,真數,不合乎題意;當時,,解不等式,解得或,此時函數的定義域為,定義域關于原點對稱,合乎題意.綜上所述,.故答案為:.【題目點撥】本題考查利用函數的奇偶性求參數,考查了函數奇偶性的定義和對數運算性質的應用,考查計算能力,屬于中等題.16、1【解題分析】
根據條件即可得出,由即可得出,進行數量積的運算即可求出λ.【題目詳解】∵向量與的夾角為,||=||=1,且;∴;∴λ=1.故答案為:1.【題目點撥】考查向量數量積的運算及計算公式,以及向量垂直的充要條件.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)見解析(2)【解題分析】
(1)由已知可證得平面,則有,在中,由已知可得,即可證得平面,進而證得結論.(2)過作交于,由為的中點,結合已知有平面.則,可求得.建立坐標系分別求得面的法向量,平面的一個法向量為,利用公式即可求得結果.【題目詳解】(1)證明:平面,平面,,又四邊形為正方形,.又、平面,且,平面..中,,為的中點,.又、平面,,平面.平面,平面平面.(2)解:過作交于,如圖為的中點,,.又平面,平面.,.所以,又、、兩兩互相垂直,以、、為坐標軸建立如圖所示的空間直角坐標系.,,,設平面的法向量,則,即.令,則,..平面的一個法向量為.二面角的余弦值為.【題目點撥】本題考查面面垂直的證明方法,考查了空間線線、線面、面面位置關系,考查利用向量法求二面角的方法,難度一般.18、(1)個;(1)存在,.【解題分析】試題分析:(1)設,對其求導,及最小值,從而得到的解析式,進一步求值域即可;(1)分別對和兩種情況進行討論,得到的解析式,進一步構造,通過求導得到最值,得到滿足條件的的范圍.試題解析:(1)設,.............1分令,得遞增;令,得遞減,.................1分∴,∴,即,∴.............3分設,結合與在上圖象可知,這兩個函數的圖象在上有兩個交點,即在上零點的個數為1...........................5分(或由方程在上有兩根可得)(1)假設存在實數,使得對恒成立,則,對恒成立,即,對恒成立,................................6分①設,令,得遞增;令,得遞減,∴,當即時,,∴,∵,∴4.故當時,對恒成立,.......................8分當即時,在上遞減,∴.∵,∴,故當時,對恒成立............................10分②若對恒成立,則,∴...........11分由①及②得,.故存在實數,使得對恒成立,且的取值范圍為................................................11分考點:導數應用.【思路點睛】本題考查了函數恒成立問題;利用導數來判斷函數的單調性,進一步求最值;屬于難題.本題考查函數導數與單調性.確定零點的個數問題:可利用數形結合的辦法判斷交點個數,如果函數較為復雜,可結合導數知識確定極值點和單調區間從而確定其大致圖象.方程的有解問題就是判斷是否存在零點的問題,可參變分離,轉化為求函數的值域問題處理.恒成立問題以及可轉化為恒成立問題的問題,往往可利用參變分離的方法,轉化為求函數最值處理.也可構造新函數然后利用導數來求解.注意利用數形結合的數學思想方法.19、(1)列聯表見解析,有把握;(2)①;②元時【解題分析】
(1)直接由題意列出列聯表,通過計算,可判斷精英店與采用促銷活動是否有關.(2)①代入表中數據,結合公式求出;②由①中所得的線性回歸方程,若售價為,單價利潤為,日銷售量為,進而可求出日利潤,結合導數可求最值.【題目詳解】解:(1)由題意知,采用促銷中精英店的數量為,采用促銷中非精英店的數量為;沒有采用促銷中精英店的數量為,沒有采用促銷中非精英店的數量為,列聯表為采用促銷沒有采用促銷合計精英店352055非精英店153045合計5050100因為有的把握認為“精英店與采用促銷活動有關”.(2)①由公式可得:所以回歸方程為②若售價為,單件利潤為,日銷售為,故日利潤,解得.當時,單調遞增;當時,單調遞減.故當售價元時,日利潤達到最大為元.【題目點撥】本題考查了獨立性檢驗,考查了線性回歸方程的求法,考查了函數最值的求解.在求函數的最值時,常用的方法有:函數圖像法、結合函數單調性分析最值、基本不等式法、導數法.其中最常用的還是導數法.20、(1);(2)【解題分析】
(1)將有兩個零點轉化為方程有兩個相異實根,令求導,利用其單調性和極值求解;(2)將問題轉化為對一切恒成立,令,求導,研究單調性,求出其最值即可得結果.【題目詳解】(1)有兩個零點關于的方程有兩個相異實根由,知有兩個零點有兩個相異實根.令,則,由得:,由得:,在單調遞增,在單調遞減,又當時,,當時,當時,有兩個零點時,實數的取值范圍為;(2)當時,,原命題等價于對一切恒成立對一切恒成立.令令,,則在上單增又,,使即①當時,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 倉儲搬遷活動方案
- 倉庫春節活動方案
- 仙林平安夜活動方案
- 代縣餐飲活動策劃方案
- 代賬公司引流活動方案
- 以大帶小活動方案
- 以茶會友活動策劃方案
- 仲夏之夜活動方案
- 企業七夕活動策劃方案
- 企業親情服務日活動方案
- 吉林省主要地區風玫瑰圖
- 生物信息學知到章節答案智慧樹2023年華東理工大學
- 松花江水污染事件工程倫理案例分析
- 窗戶合同范本
- 云南省地圖含市縣地圖矢量分層地圖行政區劃市縣概況ppt模板
- JJF 1076-2020數字式溫濕度計校準規范
- GB/T 18838.4-2008涂覆涂料前鋼材表面處理噴射清理用金屬磨料的技術要求第4部分:低碳鑄鋼丸
- 小學一年級《讀讀童謠和兒歌》閱讀考級測試題附答案
- 廣州市人力資源和社會保障局事業單位招聘工作人員【共500題含答案解析】模擬檢測試卷
- 心電監護操作評分標準
- 電子印鑒卡講解
評論
0/150
提交評論