2023-2024學年河南省鄧州市張村鄉中學數學九年級第一學期期末質量檢測試題含解析_第1頁
2023-2024學年河南省鄧州市張村鄉中學數學九年級第一學期期末質量檢測試題含解析_第2頁
2023-2024學年河南省鄧州市張村鄉中學數學九年級第一學期期末質量檢測試題含解析_第3頁
2023-2024學年河南省鄧州市張村鄉中學數學九年級第一學期期末質量檢測試題含解析_第4頁
2023-2024學年河南省鄧州市張村鄉中學數學九年級第一學期期末質量檢測試題含解析_第5頁
已閱讀5頁,還剩19頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023-2024學年河南省鄧州市張村鄉中學數學九年級第一學期期末質量檢測試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監考員收回。一、選擇題(每小題3分,共30分)1.如圖,小明同學用自制的直角三角形紙板DEF測量樹的高度AB,他調整自己的位置,設法使斜邊DF保持水平,并且邊DE與點B在同一直線上.已知紙板的兩條邊DF=50cm,EF=30cm,測得邊DF離地面的高度AC=1.5m,CD=20m,則樹高AB為()A.12m B.13.5m C.15m D.16.5m2.如圖,在△ABC中,點D在BC上一點,下列條件中,能使△ABC與△DAC相似的是()

A.∠BAD=∠C B.∠BAC=∠BDA C.AB2=BD?BC D.AC2=CD?CB3.若反比例函數y=的圖象經過點(2,﹣6),則k的值為()A.﹣12 B.12 C.﹣3 D.34.如圖,在四邊形ABCD中,對角線AC與BD相交于點O,AC平分∠DAB,且∠DAC=∠DBC,那么下列結論不一定正確的是()A.△AOD∽△BOC B.△AOB∽△DOCC.CD=BC D.BC?CD=AC?OA5.一列快車從甲地駛往乙地,一列特快車從乙地駛往甲地,快車的速度為100千米/小時,特快車的速度為150千米/小時,甲乙兩地之間的距離為1000千米,兩車同時出發,則圖中折線大致表示兩車之間的距離(千米)與快車行駛時間t(小時)之間的函數圖象是A. B.C. D.6.下列根式中屬于最簡二次根式的是()A. B.C. D.7.如圖,圓O是Rt△ABC的外接圓,∠ACB=90°,∠A=25°,過點C作圓O的切線,交AB的延長線于點D,則∠D的度數是()A.25° B.40° C.50° D.65°8.如圖,二次函數的圖象過點,下列說法:①;②;③若是拋物線上的兩點,則;④當時,.其中正確的個數為()

A.4 B.3 C.2 D.19.如圖,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,點M是AB上的一點,點N是CB上的一點,,當∠CAN與△CMB中的一個角相等時,則BM的值為()A.3或4 B.或4 C.或6 D.4或610.如圖,反比例函數的圖象上有一點A,AB平行于x軸交y軸于點B,△ABO的面積是1,則反比例函數的表達式是()A. B. C. D.二、填空題(每小題3分,共24分)11.已知二次函數y=ax2+bx+c(a≠0)的圖象與x軸交于(x1,0),且﹣1<x1<0,對稱軸x=1.如圖所示,有下列5個結論:①abc>0;②b<a+c;③4a+2b+c>0;④2c<3b;⑤a+b>m(am+b)(m≠1的實數).其中所有結論正確的是______(填寫番號).12.在矩形ABCD中,P為CD邊上一點(DP<CP),∠APB=90°.將△ADP沿AP翻折得到△AD'P,PD'的延長線交邊AB于點M,過點B作BN∥MP交DC于點N,連接AC,分別交PM,PB于點E,F.現有以下結論:①連接DD',則AP垂直平分DD';②四邊形PMBN是菱形;③AD2=DP?PC;④若AD=2DP,則;其中正確的結論是_____(填寫所有正確結論的序號)13.在Rt△ABC中,∠C=90°,如果AB=6,,那么AC=_____.14.如圖,矩形ABCD繞點A旋轉90°,得矩形,若三點在同一直線上,則的值為_______________15.若一個圓錐的主視圖是腰長為5,底邊長為6的等腰三角形,則該圓錐的側面積是____________.16.四邊形ABCD與四邊形位似,點O為位似中心.若,則________.17.如圖,在平面直角坐標系中,點A是x軸正半軸上一點,菱形OABC的邊長為5,且tan∠COA=,若函數的圖象經過頂點B,則k的值為________.18.已知,則=__________.三、解答題(共66分)19.(10分)如圖,是由兩個長方體組合而成的一個立體圖形的主視圖和左視圖,根據圖中所標尺寸(單位:).(1)直接寫出上下兩個長方休的長、寬、商分別是多少:(2)求這個立體圖形的體積.20.(6分)如圖,小明欲利用測角儀測量樹的高度.已知他離樹的水平距離BC為10m,測角儀的高度CD為1.5m,測得樹頂A的仰角為33°.求樹的高度AB.(參考數據:sin33°≈0.54,cos33°≈0.84,tan33°≈0.65)21.(6分)定義:我們知道,四邊形的一條對角線把這個四邊形分成了兩個三角形,如果這兩個三角形相似(不全等),我們就把這條對角線叫做這個四邊形的“相似對角線”.理解:(1)如圖1,已知Rt△ABC在正方形網格中,請你只用無刻度的直尺在網格中找到一點D,使四邊形ABCD是以AC為“相似對角線”的四邊形(保留畫圖痕跡,找出3個即可);(2)如圖2,在四邊形ABCD中,∠ABC=80°,∠ADC=140°,對角線BD平分∠ABC.求證:BD是四邊形ABCD的“相似對角線”;(3)如圖3,已知FH是四邊形EFCH的“相似對角線”,∠EFH=∠HFG=30°,連接EG,若△EFG的面積為2,求FH的長.22.(8分)已知,二次函數的圖象,如圖所示,解決下列問題:(1)關于的一元二次方程的解為;(2)求出拋物線的解析式;(3)為何值時.23.(8分)如圖,AC為圓O的直徑,弦AD的延長線與過點C的切線交于點B,E為BC中點,AC=,BC=4.(1)求證:DE為圓O的切線;(2)求陰影部分面積.24.(8分)如圖,在平面直角坐標系中,的三個頂點都在格點上,點的坐標為,請解答下列問題:(1)畫出關于軸對稱的,點的坐標為______;(2)在網格內以點為位似中心,把按相似比放大,得到,請畫出;若邊上任意一點的坐標為,則兩次變換后對應點的坐標為______.25.(10分)已知x2﹣8x+16﹣m2=0(m≠0)是關于x的一元二次方程(1)證明:此方程總有兩個不相等的實數根;(2)若等腰△ABC的一邊長a=6,另兩邊長b、c是該方程的兩個實數根,求△ABC的面積.26.(10分)一只箱子里共有3個球,其中2個白球,1個紅球,它們除顏色外均相同.(1)從箱子中任意摸出一個球是白球的概率是多少?(2)從箱子中任意摸出一個球,不將它放回箱子,攪勻后再摸出一個球,求兩次摸出球的都是白球的概率,并畫出樹狀圖.

參考答案一、選擇題(每小題3分,共30分)1、D【解析】利用直角三角形DEF和直角三角形BCD相似求得BC的長后加上小明同學的身高即可求得樹高AB.【詳解】∵∠DEF=∠BCD=90°,∠D=∠D,∴△DEF∽△DCB,∴,∵DF=50cm=0.5m,EF=30cm=0.3m,AC=1.5m,CD=20m,∴由勾股定理求得DE=40cm,∴,∴BC=15米,∴AB=AC+BC=1.5+15=16.5(米).故答案為16.5m.【點睛】本題考查了相似三角形的應用,解題的關鍵是從實際問題中整理出相似三角形的模型.2、D【解析】根據相似三角形的判定即可.【詳解】△ABC與△DAC有一個公共角,即∠ACB=∠DCA,要使△ABC與△DAC相似,則還需一組角對應相等,或這組相等角的兩邊對應成比例即可,觀察四個選項可知,選項D中的AC即ACCD=CBAC,正好是故選:D.【點睛】本題考查了相似三角形的判定,熟練掌握相似三角形的判定是解題關鍵.3、A【解析】試題分析:∵反比例函數的圖象經過點(2,﹣6),∴,解得k=﹣1.故選A.考點:反比例函數圖象上點的坐標特征.4、D【分析】直接利用相似三角形的判定方法分別分析得出答案.【詳解】解:∵∠DAC=∠DBC,∠AOD=∠BOC,∴∽,故A不符合題意;∵∽,∴AO:OD=OB:OC,∵∠AOB=∠DOC,∴∽,故B不符合題意;∵∽,∴∠CDB=∠CAB,∵∠CAD=∠CAB,∠DAC=∠DBC,∴∠CDB=∠DBC,∴CD=BC;沒有條件可以證明,故選D.【點睛】本題考查了相似三角形的判定與性質,解題關鍵在于熟練掌握相似三角形的判定方法①有兩個對應角相等的三角形相似;②有兩個對應邊的比相等,且其夾角相等,則兩個三角形相似;③三組對應邊的比相等,則兩個三角形相似.5、C【解析】分三段討論:①兩車從開始到相遇,這段時間兩車距迅速減小;②相遇后向相反方向行駛至特快到達甲地,這段時間兩車距迅速增加;③特快到達甲地至快車到達乙地,這段時間兩車距緩慢增大;結合圖象可得C選項符合題意.故選C.6、D【分析】根據最簡二次根式的概念即可求出答案.【詳解】解:A.,故此選項錯誤;B.,故此選項錯誤;C.,故此選項錯誤;D.是最簡二次根式,故此選項正確故選:D.【點睛】本題考查最簡二次根式,解題的關鍵是正確理解最簡二次根式的概念,本題屬于基礎題型.7、B【分析】首先連接OC,由∠A=25°,可求得∠BOC的度數,由CD是圓O的切線,可得OC⊥CD,繼而求得答案.【詳解】連接OC,∵圓O是Rt△ABC的外接圓,∠ACB=90°,∴AB是直徑,∵∠A=25°,∴∠BOC=2∠A=50°,∵CD是圓O的切線,∴OC⊥CD,∴∠D=90°-∠BOC=40°.故選B.8、B【分析】根據二次函數的性質對各項進行判斷即可.【詳解】A.∵函數圖象過點,∴對稱軸為,可得,正確;B.∵,∴當,,正確;C.根據二次函數的對稱性,的縱坐標等于的縱坐標,∵,所以,錯誤;D.由圖象可得,當時,,正確;故答案為:B.【點睛】本題考查了二次函數的問題,掌握二次函數的圖象以及性質是解題的關鍵.9、D【分析】分兩種情形:當時,,設,,可得,解出值即可;當時,過點作,可得,得出,,則,證明,得出方程求解即可.【詳解】解:在Rt△ABC中,∠ACB=90°,AC=1,BC=8,∴,AB=10,,設,,①當時,可得,,,,.②當時,如圖2中,過點作,可得,,,,,,,,,,,,.綜上所述,或1.故選:D.【點睛】本題考相似三角形的判定和性質,解題的關鍵是學會用分類討論的思想思考問題,學會添加常用輔助線,構造相似三角形解決問題.10、C【分析】如圖,過點A作AC⊥x軸于點C,構建矩形ABOC,根據反比例函數系數k的幾何意義知|k|=四邊形ABOC的面積.【詳解】如圖,過點A作AC⊥x軸于點C.則四邊形ABOC是矩形,∴S=S=1,∴|k|=S=S+S=2,∴k=2或k=?2.又∵函數圖象位于第一象限,∴k>0,∴k=2.則反比函數解析式為.故選C.【點睛】此題考查反比例函數系數k的幾何意義,解題關鍵在于掌握反比例函數的性質.二、填空題(每小題3分,共24分)11、③④⑤【解析】根據函數圖象和二次函數的性質可以判斷題目中各個小題的結論是否成立,從而可以解答本題.【詳解】解:由圖象可得,拋物線開口向下,則a<0,拋物線與y軸交于正半軸,則c>0,對稱軸在y軸右側,則與a的符號相反,故b>0.

∴a<0,b>0,c>0,

∴abc<0,故①錯誤,

當x=-1時,y=a-b+c<0,得b>a+c,故②錯誤,

∵二次函數y=ax2+bx+c(a≠0)的圖象與x軸交于(x1,0),且-1<x1<0,對稱軸x=1,

∴x=2時的函數值與x=0的函數值相等,

∴x=2時,y=4a+2b+c>0,故③正確,

∵x=-1時,y=a-b+c<0,-=1,

∴2a-2b+2c<0,b=-2a,

∴-b-2b+2c<0,

∴2c<3b,故④正確,

由圖象可知,x=1時,y取得最大值,此時y=a+b+c,

∴a+b+c>am2+bm+c(m≠1),

∴a+b>am2+bm

∴a+b>m(am+b),故⑤正確,

故答案為:③④⑤.【點睛】本題考查二次函數圖象與系數的關系、拋物線與x軸的交點坐標,解答本題的關鍵是明確題意,利用二次函數的性質和數形結合的思想解答.12、①②③【分析】根據折疊的性質得出AP垂直平分DD',判斷出①正確.過點P作PG⊥AB于點G,易知四邊形DPGA,四邊形PCBG是矩形,所以AD=PG,DP=AG,GB=PC,易證△APG∽△PBG,所以PG2=AG?GB,即AD2=DP?PC判斷出③正確;DP∥AB,所以∠DPA=∠PAM,由題意可知:∠DPA=∠APM,所以∠PAM=∠APM,由于∠APB﹣∠PAM=∠APB﹣∠APM,即∠ABP=∠MPB,從而可知PM=MB=AM,又易證四邊形PMBN是平行四邊形,所以四邊形PMBN是菱形;判斷出②正確;由于,可設DP=1,AD=2,由(1)可知:AG=DP=1,PG=AD=2,從而求出GB=PC=4,AB=AG+GB=5,由于CP∥AB,從而可證△PCF∽△BAF,△PCE∽△MAE,從而可得,,從而可求出EF=AF﹣AE=AC﹣=AC,從而可得,判斷出④錯誤.【詳解】解:∵將△ADP沿AP翻折得到△AD'P,∴AP垂直平分DD',故①正確;解法一:過點P作PG⊥AB于點G,∴易知四邊形DPGA,四邊形PCBG是矩形,∴AD=PG,DP=AG,GB=PC∵∠APB=90°,∴∠APG+∠GPB=∠GPB+∠PBG=90°,∴∠APG=∠PBG,∴△APG∽△PBG,∴,∴PG2=AG?GB,即AD2=DP?PC;解法二:易證:△ADP∽△PCB,∴,由于AD=CB,∴AD2=DP?PC;故③正確;∵DP∥AB,∴∠DPA=∠PAM,由題意可知:∠DPA=∠APM,∴∠PAM=∠APM,∵∠APB﹣∠PAM=∠APB﹣∠APM,即∠ABP=∠MPB∴AM=PM,PM=MB,∴PM=MB,又易證四邊形PMBN是平行四邊形,∴四邊形PMBN是菱形;故②正確;由于,可設DP=1,AD=2,由(1)可知:AG=DP=1,PG=AD=2,∵PG2=AG?GB,∴4=1?GB,∴GB=PC=4,AB=AG+GB=5,∵CP∥AB,∴△PCF∽△BAF,∴,∴又易證:△PCE∽△MAE,AM=AB=∴,∴,∴EF=AF﹣AE=AC﹣=AC∴,故④錯誤,即:正確的有①②③,故答案為:①②③.【點睛】本題是一道關于矩形折疊的綜合題目,考查的知識點有折疊的性質,矩形的性質,相似三角形的性質,菱形的判定等,此題充分考查了學生對所學知識點的掌握情況以及綜合利用能力,是一道很好的題目.13、2【解析】如圖所示,在Rt△ABC中,∠C=90°,AB=6,cosA=,∴cosA=,則AC=AB=×6=2,故答案為2.14、【分析】連接,根據旋轉的性質得到,根據相似三角形的性質得,即,即可得到結論.【詳解】解:連接,∵矩形ABCD繞點A旋轉90°,得矩形,

∴=BC=AD,,,

∵三點在同一直線上,∴∴.即.解得或(舍去)所以.故答案為:【點睛】本題考查旋轉的性質,相似三角形的判定和性質,矩形的性質,正確的識別圖形是解題的關鍵.15、15π.【分析】根據圓錐的主視圖得到圓錐的底面圓的半徑為3,母線長為5,然后根據圓錐的側面展開圖為一扇形,這個扇形的弧長等于圓錐底面的周長,扇形的半徑等于圓錐的母線長和扇形的面積公式求解.【詳解】解:根據題意得圓錐的底面圓的半徑為3,母線長為5,所以這個圓錐的側面積=×5×2π×3=15π.【點睛】本題考查圓錐側面積的計算,掌握公式,準確計算是本題的解題關鍵.16、1∶3【解析】根據四邊形ABCD與四邊形位似,,可知位似比為1:3,即可得相似比為1:3,即可得答案.【詳解】∵四邊形與四邊形位似,點為位似中心.,∴四邊形與四邊形的位似比是1∶3,∴四邊形與四邊形的相似比是1∶3,∴AB∶OA∶OA′=1∶3,故答案為1∶3.【點睛】本題考查了位似的相關知識,位似是相似的特殊形式,位似比等于相似比,其對應的面積比等于相似比的平方.17、1【分析】作BD⊥x軸于點D,如圖,根據菱形的性質和平行線的性質可得∠BAD=∠COA,于是可得,在Rt△ABD中,由AB=5則可根據勾股定理求出BD和AD的長,進而可得點B的坐標,再把點B坐標代入雙曲線的解析式即可求出k.【詳解】解:作BD⊥x軸于點D,如圖,∵菱形OABC的邊長為5,∴AB=OA=5,AB∥OC,∴∠BAD=∠COA,∴在Rt△ABD中,設BD=3x,AD=4x,則根據勾股定理得:AB=5x=5,解得:x=1,∴BD=3,AD=4,∴OD=9,∴點B的坐標是(9,3),∵的圖象經過頂點B,∴k=3×9=1.故答案為:1.【點睛】本題考查了菱形的性質、解直角三角形、勾股定理和待定系數法求函數的解析式等知識,屬于常考題型,熟練應用上述知識、正確求出點B的坐標是解題的關鍵.18、【分析】根據比例的性質,化簡求值即可.【詳解】故答案為:.【點睛】本題主要考察比例的性質,解題關鍵是根據比例的性質化簡求值.三、解答題(共66分)19、(1)立體圖形下面的長方體的長、寬、高分別為;上面的長方體的長、寬、高分別為;(2)這個立體圖形的體積為.【分析】(1)根據主視圖可分別得出兩個長方體的長和高,根據左視圖可分別得出兩個長方體的寬和高,由此可得兩個長方體的長、寬、高;(2)分別利用長方體的體積計算公式求得兩個長方體的體積,再求和即可.【詳解】解:(1)根據視圖可知,立體圖形下面的長方體的長、寬、高分別為,上面的長方體的長、寬、高分別為(2)這個立體圖形的體積=,=,答:這個立體圖形的體積為.【點睛】本題考查已知幾何體的三視圖求體積.熟記主視圖反應幾何體的長和高,左視圖反應幾何體的寬和高,俯視圖反應幾何體的長和寬是解決此題的關鍵.20、8米【詳解】解:如圖,過點D作DE⊥AB,垂足為E.在Rt△ADE中,DE=BC=10,∠ADE=33°,tan∠ADE=,∴AE=DE·tan∠ADE≈10×0.65=6.5,∴AB=AE+BE=AE+CD=6.5+1.5=8(m).答:樹的高度AB約為8m.21、(1)見解析;(2)證明見解析;(3)FH=2.【解析】(1)先求出AB,BC,AC,再分情況求出CD或AD,即可畫出圖形;(2)先判斷出∠A+∠ADB=140°=∠ADC,即可得出結論;(3)先判斷出△FEH∽△FHG,得出FH2=FE?FG,再判斷出EQ=FE,繼而求出FG?FE=8,即可得出結論.【詳解】(1)由圖1知,AB=,BC=2,∠ABC=90°,AC=5,∵四邊形ABCD是以AC為“相似對角線”的四邊形,當∠ACD=90°時,△ACD∽△ABC或△ACD∽△CBA,∴或,∴CD=10或CD=2.5同理:當∠CAD=90°時,AD=2.5或AD=10,(2)∵∠ABC=80°,BD平分∠ABC,∴∠ABD=∠DBC=40°,∴∠A+∠ADB=140°∵∠ADC=140°,∴∠BDC+∠ADB=140°,∴∠A=∠BDC,∴△ABD∽△BDC,∴BD是四邊形ABCD的“相似對角線”;(3)如圖3,∵FH是四邊形EFGH的“相似對角線”,∴△EFH與△HFG相似,∵∠EFH=∠HFG,∴△FEH∽△FHG,∴,∴FH2=FE?FG,過點E作EQ⊥FG于Q,∴EQ=FE?sin60°=FE,∵FG×EQ=2,∴FG×FE=2,∴FG?FE=8,∴FH2=FE?FG=8,∴FH=2.【點睛】本題考查了相似三角形的綜合題,涉及到新概念、相似三角形的判定與性質等,正確理解新概念,熟練應用相似三角形的相關知識是解題的關鍵.22、(1)-1或2;(2)拋物線解析式為y=-x2+2x+2;(2)x>2或x<-1.【分析】(1)直接觀察圖象,拋物線與x軸交于-1,2兩點,所以方程的解為x1=-1,x2=2.

(2)設出拋物線的頂點坐標形式,代入坐標(2,0),即可求得拋物線的解析式.

(2)若y<0,則函數的圖象在x軸的下方,找到對應的自變量取值范圍即可.【詳解】解:(1)觀察圖象可看對稱軸出拋物線與x軸交于x=-1和x=2兩點,

∴方程的解為x1=-1,x2=2,

故答案為:-1或2;

(2)設拋物線解析式為y=-(x-1)2+k,

∵拋物線與x軸交于點(2,0),

∴(2-1)2+k=0,

解得:k=4,

∴拋物線解析式為y=-(x-1)2+4,

即:拋物線解析式為y=-x2+2x+2;

(2)拋物線與x軸的交點(-1,0),(2,0),當y<0時,則函數的圖象在x軸的下方,由函數的圖象可知:x>2或x<-1;【點睛】本題主要考查了二次函數與一元二次方程、不等式的關系,以及求函數解析式的方法,能從圖像中得到關鍵信息是解決此題的關鍵.23、(1)證明見解析;(2)S陰影=4-2π【分析】(1)根據斜邊中線等于斜邊一半得到DE=CE,再利用切線的性質得到∠BCO=90°,最后利用等量代換即可證明,(2)根據S陰影=2S△ECO-S扇形COD即可求解.【詳解】(1)連接DC、DO.因為AC為圓O直徑,所以∠ADC=90°,則∠BDC=90°,因為E為Rt△BDC斜邊BC中點,所以DE=CE=BE=BC,所以∠DCE=∠EDC,因為OD=OC,所以∠DCO=∠CDO.因為BC為圓O切線,所以BC⊥AC,即∠BCO=90°,所以∠ODE=∠ODC+∠EDC=∠OCD+∠DCE=∠BCO=90°,所以ED⊥OD,所以DE為圓O的切線.(2)S陰影=2S△ECO-S扇形COD=4-2π【點睛】本題主要考查切線的性質和判定及扇形面積的計算,掌握切線的判定定理及扇形的面積公式是解題的關鍵.24、(1)圖見解析,(2,1);(2)圖見解析,【分析】(1)依次作出點A、B、C三點關于x軸的對稱點A1、B1、C1,再順次連接即可;根據關于x軸對稱的點的坐標特點:橫坐標不變,縱坐標互為相反數寫出即可;(2)根據位似圖形的性質作圖即可;先求出經過一次變換(關于x軸對稱)的點的坐標,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論