江西省南昌市10所省重點2024屆高三下學期第四周數學試題考試試卷_第1頁
江西省南昌市10所省重點2024屆高三下學期第四周數學試題考試試卷_第2頁
江西省南昌市10所省重點2024屆高三下學期第四周數學試題考試試卷_第3頁
江西省南昌市10所省重點2024屆高三下學期第四周數學試題考試試卷_第4頁
江西省南昌市10所省重點2024屆高三下學期第四周數學試題考試試卷_第5頁
已閱讀5頁,還剩13頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

江西省南昌市10所省重點2024屆高三下學期第四周數學試題考試試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.我們熟悉的卡通形象“哆啦A夢”的長寬比為.在東方文化中通常稱這個比例為“白銀比例”,該比例在設計和建筑領域有著廣泛的應用.已知某電波塔自下而上依次建有第一展望臺和第二展望臺,塔頂到塔底的高度與第二展望臺到塔底的高度之比,第二展望臺到塔底的高度與第一展望臺到塔底的高度之比皆等于“白銀比例”,若兩展望臺間高度差為100米,則下列選項中與該塔的實際高度最接近的是()A.400米 B.480米C.520米 D.600米2.已知集合,,,則()A. B. C. D.3.學業水平測試成績按照考生原始成績從高到低分為、、、、五個等級.某班共有名學生且全部選考物理、化學兩科,這兩科的學業水平測試成績如圖所示.該班學生中,這兩科等級均為的學生有人,這兩科中僅有一科等級為的學生,其另外一科等級為,則該班()A.物理化學等級都是的學生至多有人B.物理化學等級都是的學生至少有人C.這兩科只有一科等級為且最高等級為的學生至多有人D.這兩科只有一科等級為且最高等級為的學生至少有人4.已知,則()A. B. C. D.5.點為不等式組所表示的平面區域上的動點,則的取值范圍是()A. B. C. D.6.設,,則()A. B.C. D.7.設是兩條不同的直線,是兩個不同的平面,下列命題中正確的是()A.若,,則 B.若,,則C.若,,則 D.若,,則8.已知為虛數單位,實數滿足,則()A.1 B. C. D.9.第24屆冬奧會將于2022年2月4日至2月20日在北京市和張家口市舉行,為了解奧運會會旗中五環所占面積與單獨五個環面積之和的比值P,某學生做如圖所示的模擬實驗:通過計算機模擬在長為10,寬為6的長方形奧運會旗內隨機取N個點,經統計落入五環內部及其邊界上的點數為n個,已知圓環半徑為1,則比值P的近似值為()A. B. C. D.10.已知集合則()A. B. C. D.11.已知函數(),若函數在上有唯一零點,則的值為()A.1 B.或0 C.1或0 D.2或012.執行如圖所示的程序框圖后,輸出的值為5,則的取值范圍是().A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知,滿足約束條件,則的最大值為________.14.在如圖所示的三角形數陣中,用表示第行第個數,已知,且當時,每行中的其他各數均等于其“肩膀”上的兩個數之和,即,若,則正整數的最小值為______.15.已知向量滿足,,則______________.16.已知非零向量,滿足,且,則與的夾角為____________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知正實數滿足.(1)求的最小值.(2)證明:18.(12分)已知,,且.(1)求的最小值;(2)證明:.19.(12分)設數列,的各項都是正數,為數列的前n項和,且對任意,都有,,,(e是自然對數的底數).(1)求數列,的通項公式;(2)求數列的前n項和.20.(12分)已知.(1)已知關于的不等式有實數解,求的取值范圍;(2)求不等式的解集.21.(12分)已知數列的通項,數列為等比數列,且,,成等差數列.(1)求數列的通項;(2)設,求數列的前項和.22.(10分)如圖,在正四棱柱中,已知,.(1)求異面直線與直線所成的角的大小;(2)求點到平面的距離.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解題分析】

根據題意,畫出幾何關系,結合各線段比例可先求得第一展望臺和第二展望臺的距離,進而由比例即可求得該塔的實際高度.【題目詳解】設第一展望臺到塔底的高度為米,塔的實際高度為米,幾何關系如下圖所示:由題意可得,解得;且滿足,故解得塔高米,即塔高約為480米.故選:B【題目點撥】本題考查了對中國文化的理解與簡單應用,屬于基礎題.2、D【解題分析】

根據集合的基本運算即可求解.【題目詳解】解:,,,則故選:D.【題目點撥】本題主要考查集合的基本運算,屬于基礎題.3、D【解題分析】

根據題意分別計算出物理等級為,化學等級為的學生人數以及物理等級為,化學等級為的學生人數,結合表格中的數據進行分析,可得出合適的選項.【題目詳解】根據題意可知,名學生減去名全和一科為另一科為的學生人(其中物理化學的有人,物理化學的有人),表格變為:物理化學對于A選項,物理化學等級都是的學生至多有人,A選項錯誤;對于B選項,當物理和,化學都是時,或化學和,物理都是時,物理、化學都是的人數最少,至少為(人),B選項錯誤;對于C選項,在表格中,除去物理化學都是的學生,剩下的都是一科為且最高等級為的學生,因為都是的學生最少人,所以一科為且最高等級為的學生最多為(人),C選項錯誤;對于D選項,物理化學都是的最多人,所以兩科只有一科等級為且最高等級為的學生最少(人),D選項正確.故選:D.【題目點撥】本題考查合情推理,考查推理能力,屬于中等題.4、B【解題分析】

利用誘導公式以及同角三角函數基本關系式化簡求解即可.【題目詳解】,本題正確選項:【題目點撥】本題考查誘導公式的應用,同角三角函數基本關系式的應用,考查計算能力.5、B【解題分析】

作出不等式對應的平面區域,利用線性規劃的知識,利用的幾何意義即可得到結論.【題目詳解】不等式組作出可行域如圖:,,,的幾何意義是動點到的斜率,由圖象可知的斜率為1,的斜率為:,則的取值范圍是:,,.故選:.【題目點撥】本題主要考查線性規劃的應用,根據目標函數的幾何意義結合斜率公式是解決本題的關鍵.6、D【解題分析】

由不等式的性質及換底公式即可得解.【題目詳解】解:因為,,則,且,所以,,又,即,則,即,故選:D.【題目點撥】本題考查了不等式的性質及換底公式,屬基礎題.7、C【解題分析】

在A中,與相交或平行;在B中,或;在C中,由線面垂直的判定定理得;在D中,與平行或.【題目詳解】設是兩條不同的直線,是兩個不同的平面,則:在A中,若,,則與相交或平行,故A錯誤;在B中,若,,則或,故B錯誤;在C中,若,,則由線面垂直的判定定理得,故C正確;在D中,若,,則與平行或,故D錯誤.故選C.【題目點撥】本題考查命題真假的判斷,考查空間中線線、線面、面面間的位置關系等基礎知識,是中檔題.8、D【解題分析】,則故選D.9、B【解題分析】

根據比例關系求得會旗中五環所占面積,再計算比值.【題目詳解】設會旗中五環所占面積為,由于,所以,故可得.故選:B.【題目點撥】本題考查面積型幾何概型的問題求解,屬基礎題.10、B【解題分析】

解對數不等式可得集合A,由交集運算即可求解.【題目詳解】集合解得由集合交集運算可得,故選:B.【題目點撥】本題考查了集合交集的簡單運算,對數不等式解法,屬于基礎題.11、C【解題分析】

求出函數的導函數,當時,只需,即,令,利用導數求其單調區間,即可求出參數的值,當時,根據函數的單調性及零點存在性定理可判斷;【題目詳解】解:∵(),∴,∴當時,由得,則在上單調遞減,在上單調遞增,所以是極小值,∴只需,即.令,則,∴函數在上單調遞增.∵,∴;當時,,函數在上單調遞減,∵,,函數在上有且只有一個零點,∴的值是1或0.故選:C【題目點撥】本題考查利用導數研究函數的零點問題,零點存在性定理的應用,屬于中檔題.12、C【解題分析】

框圖的功能是求等比數列的和,直到和不滿足給定的值時,退出循環,輸出n.【題目詳解】第一次循環:;第二次循環:;第三次循環:;第四次循環:;此時滿足輸出結果,故.故選:C.【題目點撥】本題考查程序框圖的應用,建議數據比較小時,可以一步一步的書寫,防止錯誤,是一道容易題.二、填空題:本題共4小題,每小題5分,共20分。13、【解題分析】

根據題意,畫出可行域,將目標函數看成可行域內的點與原點距離的平方,利用圖象即可求解.【題目詳解】可行域如圖所示,易知當,時,的最大值為.故答案為:9.【題目點撥】本題考查了利用幾何法解決非線性規劃問題,屬于中檔題.14、2022【解題分析】

根據條件先求出數列的通項,利用累加法進行求解即可.【題目詳解】,,,下面求數列的通項,由題意知,,,,,,數列是遞增數列,且,的最小值為.故答案為:.【題目點撥】本題主要考查歸納推理的應用,結合數列的性質求出數列的通項是解決本題的關鍵.綜合性較強,屬于難題.15、1【解題分析】

首先根據向量的數量積的運算律求出,再根據計算可得;【題目詳解】解:因為,所以又所以所以故答案為:【題目點撥】本題考查平面向量的數量積的運算,屬于基礎題.16、(或寫成)【解題分析】

設與的夾角為,通過,可得,化簡整理可求出,從而得到答案.【題目詳解】設與的夾角為可得,故,將代入可得得到,于是與的夾角為.故答案為:.【題目點撥】本題主要考查向量的數量積運算,向量垂直轉化為數量積為0是解決本題的關鍵,意在考查學生的轉化能力,分析能力及計算能力.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)見解析【解題分析】

(1)利用乘“1”法,結合基本不等式求得結果.(2)直接利用基本不等式及乘“1”法,證明即可.【題目詳解】(1)因為,所以因為,所以(當且僅當,即時等號成立),所以(2)證明:因為,所以故(當且僅當時,等號成立)【題目點撥】本題考查了基本不等式的應用,考查了乘“1”法的技巧,考查了推理論證能力,屬于中檔題.18、(1)(2)證明見解析【解題分析】

(1)利用基本不等式即可求得最小值;(2)關鍵是配湊系數,進而利用基本不等式得證.【題目詳解】(1),當且僅當“”時取等號,故的最小值為;(2),當且僅當時取等號,此時.故.【題目點撥】本題主要考查基本不等式的運用,屬于基礎題.19、(1),(2)【解題分析】

(1)當時,,與作差可得,即可得到數列是首項為1,公差為1的等差數列,即可求解;對取自然對數,則,即是以1為首項,以2為公比的等比數列,即可求解;(2)由(1)可得,再利用錯位相減法求解即可.【題目詳解】解:(1)因為,,①當時,,解得;當時,有,②由①②得,,又,所以,即數列是首項為1,公差為1的等差數列,故,又因為,且,取自然對數得,所以,又因為,所以是以1為首項,以2為公比的等比數列,所以,即(2)由(1)知,,所以,③,④③減去④得:,所以【題目點撥】本題考查由與的關系求通項公式,考查錯位相減法求數列的和.20、(1);(2).【解題分析】

(1)依據能成立問題知,,然后利用絕對值三角不等式求出的最小值,即求得的取值范圍;(2)按照零點分段法解含有兩個絕對值的不等式即可。【題目詳解】因為不等式有實數解,所以因為,所以故。①當時,,所以,故②當時,,所以,故③當時,,所以,故綜上,原不等式的解集為。【題目點撥】本題主要考查不等式有解問題的解法以及含有兩個絕對值的不等式問題的解法,意在考查零點分段法、絕對值三角不等式和轉化思想、分類討論思想的應用。21、(1);(2).【解題分析】

(1)根據,,成等差數列以及為等比數列,通過直接對進行賦值計算出的首項和公比,即可求解出的通項公式;(2)的通項公式符合等差乘以等比的形式,采用錯位相減法進行求和.【題目詳解】(1)數列為等比數列,且,,成等差數列.設數列的公比為,,,解得(2),,,,.【題目點撥】本題考查等差、等比數列的綜合以及錯位相減法求和的應用,難度一般.判斷是否適合使用錯位相減法,可根據數列的通項公式是否符合

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論