2024屆廣西柳州市柳北區市級名校中考聯考數學試卷含解析_第1頁
2024屆廣西柳州市柳北區市級名校中考聯考數學試卷含解析_第2頁
2024屆廣西柳州市柳北區市級名校中考聯考數學試卷含解析_第3頁
2024屆廣西柳州市柳北區市級名校中考聯考數學試卷含解析_第4頁
2024屆廣西柳州市柳北區市級名校中考聯考數學試卷含解析_第5頁
已閱讀5頁,還剩16頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2024屆廣西柳州市柳北區市級名校中考聯考數學試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(共10小題,每小題3分,共30分)1.如圖,函數y=的圖象記為c1,它與x軸交于點O和點A1;將c1繞點A1旋轉180°得c2,交x軸于點A2;將c2繞點A2旋轉180°得c3,交x軸于點A3…如此進行下去,若點P(103,m)在圖象上,那么m的值是()A.﹣2 B.2 C.﹣3 D.42.如圖,向四個形狀不同高同為h的水瓶中注水,注滿為止.如果注水量V(升)與水深h(厘米)的函數關系圖象如圖所示,那么水瓶的形狀是()A. B. C. D.3.若分式有意義,則的取值范圍是()A.; B.; C.; D..4.如圖,直線a,b被直線c所截,下列條件不能判定直線a與b平行的是()A.∠1=∠3 B.∠2+∠4=180° C.∠1=∠4 D.∠3=∠45.已知a,b為兩個連續的整數,且a<<b,則a+b的值為()A.7 B.8 C.9 D.106.如圖,為測量一棵與地面垂直的樹OA的高度,在距離樹的底端30米的B處,測得樹頂A的仰角∠ABO為α,則樹OA的高度為()A.米 B.30sinα米 C.30tanα米 D.30cosα米7.二次函數y=(2x-1)2+2的頂點的坐標是()A.(1,2) B.(1,-2) C.(,2)

D.(-,-2)8.如圖是一次數學活動課制作的一個轉盤,盤面被等分成四個扇形區域,并分別標有數字-1,0,1,2.若轉動轉盤兩次,每次轉盤停止后記錄指針所指區域的數字(當指針恰好指在分界線上時,不記,重轉),則記錄的兩個數字都是正數的概率為()A. B. C. D.9.在直角坐標系中,設一質點M自P0(1,0)處向上運動一個單位至P1(1,1),然后向左運動2個單位至P2處,再向下運動3個單位至P3處,再向右運動4個單位至P4處,再向上運動5個單位至P5處……,如此繼續運動下去,設Pn(xn,yn),n=1,2,3,……,則x1+x2+……+x2018+x2019的值為()A.1 B.3 C.﹣1 D.201910.如圖,已知點E在正方形ABCD內,滿足∠AEB=90°,AE=6,BE=8,則陰影部分的面積是()A.48 B.60C.76 D.80二、填空題(本大題共6個小題,每小題3分,共18分)11.計算:2a×(﹣2b)=_____.12.2018年5月18日,益陽新建西流灣大橋竣工通車,如圖,從沅江A地到資陽B地有兩條路線可走,從資陽B地到益陽火車站可經會龍山大橋或西流灣大橋或龍洲大橋到達,現讓你隨機選擇一條從沅江A地出發經過資陽B地到達益陽火車站的行走路線,那么恰好選到經過西流灣大橋的路線的概率是_____.13.如圖,已知反比例函數y=(k為常數,k≠0)的圖象經過點A,過A點作AB⊥x軸,垂足為B,若△AOB的面積為1,則k=________________.14.如圖,把Rt△ABC放在直角坐標系內,其中∠CAB=90°,BC=5,點A,B的坐標分別為(﹣1,0),(﹣4,0),將△ABC沿x軸向左平移,當點C落在直線y=﹣2x﹣6上時,則點C沿x軸向左平移了_____個單位長度.15.分解因式:a2-2ab+b2-1=______.16.如圖,在四邊形ABCD中,點E、F分別是邊AB、AD的中點,BC=15,CD=9,EF=6,∠AFE=50°,則∠ADC的度數為_____.三、解答題(共8題,共72分)17.(8分)如圖,在矩形ABCD中,AD=4,點E在邊AD上,連接CE,以CE為邊向右上方作正方形CEFG,作FH⊥AD,垂足為H,連接AF.(1)求證:FH=ED;(2)當AE為何值時,△AEF的面積最大?18.(8分)研究發現,拋物線上的點到點F(0,1)的距離與到直線l:的距離相等.如圖1所示,若點P是拋物線上任意一點,PH⊥l于點H,則PF=PH.基于上述發現,對于平面直角坐標系xOy中的點M,記點到點的距離與點到點的距離之和的最小值為d,稱d為點M關于拋物線的關聯距離;當時,稱點M為拋物線的關聯點.(1)在點,,,中,拋物線的關聯點是_____;(2)如圖2,在矩形ABCD中,點,點,①若t=4,點M在矩形ABCD上,求點M關于拋物線的關聯距離d的取值范圍;②若矩形ABCD上的所有點都是拋物線的關聯點,則t的取值范圍是________.19.(8分)如圖1,正方形ABCD的邊長為8,動點E從點D出發,在線段DC上運動,同時點F從點B出發,以相同的速度沿射線AB方向運動,當點E運動到終點C時,點F也停止運動,連接AE交對角線BD于點N,連接EF交BC于點M,連接AM.(參考數據:sin15°=,cos15°=,tan15°=2﹣)(1)在點E、F運動過程中,判斷EF與BD的位置關系,并說明理由;(2)在點E、F運動過程中,①判斷AE與AM的數量關系,并說明理由;②△AEM能為等邊三角形嗎?若能,求出DE的長度;若不能,請說明理由;(3)如圖2,連接NF,在點E、F運動過程中,△ANF的面積是否變化,若不變,求出它的面積;若變化,請說明理由.20.(8分)如圖,在?ABCD中,點O是對角線AC、BD的交點,點E是邊CD的中點,點F在BC的延長線上,且CF=BC,求證:四邊形OCFE是平行四邊形.21.(8分)某中學為了解學生平均每天“誦讀經典”的時間,在全校范圍內隨機抽查了部分學生進行調查統計(設每天的誦讀時間為分鐘),將調查統計的結果分為四個等級:Ⅰ級、Ⅱ級、Ⅲ級、Ⅳ級.將收集的數據繪制成如下兩幅不完整的統計圖.請根據圖中提供的信息,解答下列問題:()請補全上面的條形圖.()所抽查學生“誦讀經典”時間的中位數落在__________級.()如果該校共有名學生,請你估計該校平均每天“誦讀經典”的時間不低于分鐘的學生約有多少人?22.(10分)“母親節”前夕,某商店根據市場調查,用3000元購進第一批盒裝花,上市后很快售完,接著又用5000元購進第二批這種盒裝花.已知第二批所購花的盒數是第一批所購花盒數的2倍,且每盒花的進價比第一批的進價少5元.求第一批盒裝花每盒的進價是多少元?23.(12分)如圖,在平面直角坐標系中,已知拋物線y=x2+bx+c過A,B,C三點,點A的坐標是(3,0),點C的坐標是(0,-3),動點P在拋物線上.(1)b=_________,c=_________,點B的坐標為_____________;(直接填寫結果)(2)是否存在點P,使得△ACP是以AC為直角邊的直角三角形?若存在,求出所有符合條件的點P的坐標;若不存在,說明理由;(3)過動點P作PE垂直y軸于點E,交直線AC于點D,過點D作x軸的垂線.垂足為F,連接EF,當線段EF的長度最短時,求出點P的坐標.24.撫順某中學為了解八年級學生的體能狀況,從八年級學生中隨機抽取部分學生進行體能測試,測試結果分為A,B,C,D四個等級.請根據兩幅統計圖中的信息回答下列問題:本次抽樣調查共抽取了多少名學生?求測試結果為C等級的學生數,并補全條形圖;若該中學八年級共有700名學生,請你估計該中學八年級學生中體能測試結果為D等級的學生有多少名?若從體能為A等級的2名男生2名女生中隨機的抽取2名學生,做為該校培養運動員的重點對象,請用列表法或畫樹狀圖的方法求所抽取的兩人恰好都是男生的概率.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解題分析】

求出與x軸的交點坐標,觀察圖形可知第奇數號拋物線都在x軸上方,然后求出到拋物線平移的距離,再根據向右平移橫坐標加表示出拋物線的解析式,然后把點P的坐標代入計算即可得解.【題目詳解】令,則=0,解得,,由圖可知,拋物線在x軸下方,相當于拋物線向右平移4×(26?1)=100個單位得到得到,再將繞點旋轉180°得,此時的解析式為y=(x?100)(x?100?4)=(x?100)(x?104),在第26段拋物線上,m=(103?100)(103?104)=?3.故答案是:C.【題目點撥】本題考查的知識點是二次函數圖象與幾何變換,解題關鍵是根據題意得到p點所在函數表達式.2、D【解題分析】

根據一次函數的性質結合題目中的條件解答即可.【題目詳解】解:由題可得,水深與注水量之間成正比例關系,∴隨著水的深度變高,需要的注水量也是均勻升高,∴水瓶的形狀是圓柱,故選:D.【題目點撥】此題重點考查學生對一次函數的性質的理解,掌握一次函數的性質是解題的關鍵.3、B【解題分析】

分式的分母不為零,即x-2≠1.【題目詳解】∵分式有意義,∴x-2≠1,∴.故選:B.【題目點撥】考查了分式有意義的條件,(1)分式無意義?分母為零;(2)分式有意義?分母不為零;(3)分式值為零?分子為零且分母不為零.4、D【解題分析】試題分析:A.∵∠1=∠3,∴a∥b,故A正確;B.∵∠2+∠4=180°,∠2+∠1=180°,∴∠1=∠4,∵∠4=∠3,∴∠1=∠3,∴a∥b,故B正確;C.∵∠1=∠4,∠4=∠3,∴∠1=∠3,∴a∥b,故C正確;D.∠3和∠4是對頂角,不能判斷a與b是否平行,故D錯誤.故選D.考點:平行線的判定.5、A【解題分析】∵9<11<16,∴,即,∵a,b為兩個連續的整數,且,∴a=3,b=4,∴a+b=7,故選A.6、C【解題分析】試題解析:在Rt△ABO中,∵BO=30米,∠ABO為α,∴AO=BOtanα=30tanα(米).故選C.考點:解直角三角形的應用-仰角俯角問題.7、C【解題分析】試題分析:二次函數y=(2x-1)+2即的頂點坐標為(,2)考點:二次函數點評:本題考查二次函數的頂點坐標,考生要掌握二次函數的頂點式與其頂點坐標的關系8、C【解題分析】

列表得,

1

2

0

-1

1

(1,1)

(1,2)

(1,0)

(1,-1)

2

(2,1)

(2,2)

(2,0)

(2,-1)

0

(0,1)

(0,2)

(0,0)

(0,-1)

-1

(-1,1)

(-1,2)

(-1,0)

(-1,-1)

由表格可知,總共有16種結果,兩個數都為正數的結果有4種,所以兩個數都為正數的概率為,故選C.考點:用列表法(或樹形圖法)求概率.9、C【解題分析】

根據各點橫坐標數據得出規律,進而得出x+x+…+x;經過觀察分析可得每4個數的和為2,把2019個數分為505組,即可得到相應結果.【題目詳解】解:根據平面坐標系結合各點橫坐標得出:x1、x2、x3、x4、x5、x6、x7、x8的值分別為:1,﹣1,﹣1,3,3,﹣3,﹣3,5;∴x1+x2+…+x7=﹣1∵x1+x2+x3+x4=1﹣1﹣1+3=2;x5+x6+x7+x8=3﹣3﹣3+5=2;…x97+x98+x99+x100=2…∴x1+x2+…+x2016=2×(2016÷4)=1.而x2017、x2018、x2019的值分別為:1009、﹣1009、﹣1009,∴x2017+x2018+x2019=﹣1009,∴x1+x2+…+x2018+x2019=1﹣1009=﹣1,故選C.【題目點撥】此題主要考查規律型:點的坐標,解題關鍵在于找到其規律10、C【解題分析】試題解析:∵∠AEB=90°,AE=6,BE=8,∴AB=∴S陰影部分=S正方形ABCD-SRt△ABE=102-=100-24=76.故選C.考點:勾股定理.二、填空題(本大題共6個小題,每小題3分,共18分)11、﹣4ab【解題分析】

根據單項式與單項式的乘法解答即可.【題目詳解】2a×(﹣2b)=﹣4ab.故答案為﹣4ab.【題目點撥】本題考查了單項式的乘法,關鍵是根據單項式的乘法法則解答.12、.【解題分析】

由題意可知一共有6種可能,經過西流灣大橋的路線有2種可能,根據概率公式計算即可.【題目詳解】解:由題意可知一共有6種可能,經過西流灣大橋的路線有2種可能,所以恰好選到經過西流灣大橋的路線的概率=.故答案為.【題目點撥】本題考查的是用列表法或畫樹狀圖法求概率.注意列表法或畫樹狀圖法可以不重復不遺漏的列出所有可能的結果,列表法適合于兩步完成的事件;樹狀圖法適合兩步或兩步以上完成的事件.注意概率=所求情況數與總情況數之比.13、-1【解題分析】試題解析:設點A的坐標為(m,n),因為點A在y=的圖象上,所以,有mn=k,△ABO的面積為=1,∴=1,∴=1,∴k=±1,由函數圖象位于第二、四象限知k<0,∴k=-1.考點:反比例外函數k的幾何意義.14、1【解題分析】

先根據勾股定理求得AC的長,從而得到C點坐標,然后根據平移的性質,將C點縱軸代入直線解析式求解即可得到答案.【題目詳解】解:在Rt△ABC中,AB=﹣1﹣(﹣1)=3,BC=5,∴AC==1,∴點C的坐標為(﹣1,1).當y=﹣2x﹣6=1時,x=﹣5,∵﹣1﹣(﹣5)=1,∴點C沿x軸向左平移1個單位長度才能落在直線y=﹣2x﹣6上.故答案為1.【題目點撥】本題主要考查平移的性質,解此題的關鍵在于先利用勾股定理求得相關點的坐標,然后根據平移的性質將其縱坐標代入直線函數式求解即可.15、(a-b+1)(a-b-1)【解題分析】

當被分解的式子是四項時,應考慮運用分組分解法進行分解,前三項a2-2ab+b2可組成完全平方公式,再和最后一項用平方差公式分解.【題目詳解】a2-2ab+b2-1,

=(a-b)2-1,

=(a-b+1)(a-b-1).【題目點撥】本題考查用分組分解法進行因式分解.難點是采用兩兩分組還是三一分組.本題前三項可組成完全平方公式,可把前三項分為一組,分解一定要徹底.16、140°【解題分析】

如圖,連接BD,∵點E、F分別是邊AB、AD的中點,∴EF是△ABD的中位線,∴EF∥BD,BD=2EF=12,∴∠ADB=∠AFE=50°,∵BC=15,CD=9,BD=12,∴BC2=225,CD2=81,BD2=144,∴CD2+BD2=BC2,∴∠BDC=90°,∴∠ADC=∠ADB+∠BDC=50°+90°=140°.故答案為:140°.三、解答題(共8題,共72分)17、(1)證明見解析;(2)AE=2時,△AEF的面積最大.【解題分析】

(1)根據正方形的性質,可得EF=CE,再根據∠CEF=∠90°,進而可得∠FEH=∠DCE,結合已知條件∠FHE=∠D=90°,利用“AAS”即可證明△FEH≌△ECD,由全等三角形的性質可得FH=ED;(2)設AE=a,用含a的函數表示△AEF的面積,再利用函數的最值求面積最大值即可.【題目詳解】(1)證明:∵四邊形CEFG是正方形,∴CE=EF.∵∠FEC=∠FEH+∠CED=90°,∠DCE+∠CED=90°,∴∠FEH=∠DCE.在△FEH和△ECD中,EF=CE∠F∴△FEH≌△ECD,∴FH=ED.(2)解:設AE=a,則ED=FH=4-a,∴S△AEF=12AE·FH=12a(4-a)=-12∴當AE=2時,△AEF的面積最大.【題目點撥】本題考查了正方形性質、矩形性質以及全等三角形的判斷和性質和三角形面積有關的知識點,熟記全等三角形的各種判斷方法是解題的關鍵.18、(1)(2)①②【解題分析】【分析】(1)根據關聯點的定義逐一進行判斷即可得;(2))①當時,,,,,可以確定此時矩形上的所有點都在拋物線的下方,所以可得,由此可知,從而可得;②由①知,分兩種情況畫出圖形進行討論即可得.【題目詳解】(1),x=2時,y==1,此時P(2,1),則d=1+2=3,符合定義,是關聯點;,x=1時,y==,此時P(1,),則d=+=3,符合定義,是關聯點;,x=4時,y==4,此時P(4,4),則d=1+=6,不符合定義,不是關聯點;,x=0時,y==0,此時P(0,0),則d=4+5=9,不不符合定義,是關聯點,故答案為;(2)①當時,,,,,此時矩形上的所有點都在拋物線的下方,∴,∴,∵,∴;②由①,,如圖2所示時,CF最長,當CF=4時,即=4,解得:t=,如圖3所示時,DF最長,當DF=4時,即DF==4,解得t=,故答案為【題目點撥】本題考查了新定義題,二次函數的綜合,題目較難,讀懂新概念,能靈活應用新概念,結合圖形解題是關鍵.19、(1)EF∥BD,見解析;(2)①AE=AM,理由見解析;②△AEM能為等邊三角形,理由見解析;(3)△ANF的面積不變,理由見解析【解題分析】

(1)依據DE=BF,DE∥BF,可得到四邊形DBFE是平行四邊形,進而得出EF∥DB;(2)依據已知條件判定△ADE≌△ABM,即可得到AE=AM;②若△AEM是等邊三角形,則∠EAM=60°,依據△ADE≌△ABM,可得∠DAE=∠BAM=15°,即可得到DE=16-8,即當DE=16?8時,△AEM是等邊三角形;(3)設DE=x,過點N作NP⊥AB,反向延長PN交CD于點Q,則NQ⊥CD,依據△DEN∽△BNA,即可得出PN=,根據S△ANF=AF×PN=×(x+8)×=32,可得△ANF的面積不變.【題目詳解】解:(1)EF∥BD.證明:∵動點E從點D出發,在線段DC上運動,同時點F從點B出發,以相同的速度沿射線AB方向運動,∴DE=BF,又∵DE∥BF,∴四邊形DBFE是平行四邊形,∴EF∥DB;(2)①AE=AM.∵EF∥BD,∴∠F=∠ABD=45°,∴MB=BF=DE,∵正方形ABCD,∴∠ADC=∠ABC=90°,AB=AD,∴△ADE≌△ABM,∴AE=AM;②△AEM能為等邊三角形.若△AEM是等邊三角形,則∠EAM=60°,∵△ADE≌△ABM,∴∠DAE=∠BAM=15°,∵tan∠DAE=,AD=8,∴2﹣=,∴DE=16﹣8,即當DE=16﹣8時,△AEM是等邊三角形;(3)△ANF的面積不變.設DE=x,過點N作NP⊥AB,反向延長PN交CD于點Q,則NQ⊥CD,∵CD∥AB,∴△DEN∽△BNA,∴=,∴,∴PN=,∴S△ANF=AF×PN=×(x+8)×=32,即△ANF的面積不變.【題目點撥】本題屬于四邊形綜合題,主要考查了平行四邊形的判定與性質,等邊三角形的性質,全等三角形的判定與性質,解直角三角形以及相似三角形的判定與性質的綜合運用,解決問題的關鍵是作輔助線構造相似三角形,利用全等三角形的對應邊相等,相似三角形的對應邊成比例得出結論.20、證明見解析.【解題分析】

利用三角形中位線定理判定OE∥BC,且OE=BC.結合已知條件CF=BC,則OE//CF,由“有一組對邊平行且相等的四邊形為平行四邊形”證得結論.【題目詳解】∵四邊形ABCD是平行四邊形,∴點O是BD的中點.又∵點E是邊CD的中點,∴OE是△BCD的中位線,∴OE∥BC,且OE=BC.又∵CF=BC,∴OE=CF.又∵點F在BC的延長線上,∴OE∥CF,∴四邊形OCFE是平行四邊形.【題目點撥】本題考查了平行四邊形的性質和三角形中位線定理.此題利用了“平行四邊形的對角線互相平分”的性質和“有一組對邊平行且相等的四邊形為平行四邊形”的判定定理.熟記相關定理并能應用是解題的關鍵.21、)補全的條形圖見解析()Ⅱ級.().【解題分析】試題分析:(1)根據Ⅱ級的人數和所占的百分比即可求出總數,從而求出三級人數,進而補全圖形;(2)把所有同類數據按照從小到大的順序排列,中間的數據是中位數,則該數在Ⅱ級.;(3)由樣本估計總體,由于時間不低于的人數占,故該類學生約有408人.試題解析:(1)本次隨機抽查的人數為:20÷40%=50(人).三級人數為:50-13-20-7=10.補圖如下:(2)把所有同類數據按照從小到大的順序排列,中間的數據是中位數,則該數在Ⅱ級.(3)由樣本估計總體,由于時間不低于的人數占,所以該類學生約有.22、30元【解題分析】試題分析:設第一批盒裝花的進價是x元/盒,則第一批進的數量是:,第二批進的數量是:,再根據等量關系:第二批進的數量=第一批進的數量×2可得方程.解:設第一批盒裝花的進價是x元/盒,則2×=,解得x=30經檢驗,x=30是原方程的根.答:第一批盒裝花每盒的進價是30元.考點:分式方程的應用.23、(1),,(-1,0);(2)存在P的坐標是或;(1)當EF最短時,點P的坐標是:(,)或(,)【解題分析】

(1)將點A和點C的坐標代入拋物線的解析式可求得b、c的值,然后令y=0可求得點B的坐標;(2)分別過點C和點A作AC的垂線,將拋物線與P1,P2兩點先求得AC的解析式,然后可求得P1C和P2A的解析式,最后再求得P1C和P2A與拋物線的交點坐標即可;(1)連接OD.先證明四邊形OEDF為矩形,從而得到OD=EF,然后根據垂線段最短可求得點D的縱坐標,從而得到點P的縱坐標,然后由拋物線的解析式可求得點P的坐標.【題目詳解】解:(1)∵將點A和點C的坐標代入拋物線的解析式得:,解得:b=﹣2,c=

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論