江蘇省泰興市黃橋初級中學2024屆中考五模數學試題含解析_第1頁
江蘇省泰興市黃橋初級中學2024屆中考五模數學試題含解析_第2頁
江蘇省泰興市黃橋初級中學2024屆中考五模數學試題含解析_第3頁
江蘇省泰興市黃橋初級中學2024屆中考五模數學試題含解析_第4頁
江蘇省泰興市黃橋初級中學2024屆中考五模數學試題含解析_第5頁
已閱讀5頁,還剩14頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

江蘇省泰興市黃橋初級中學2024屆中考五模數學試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.剪紙是我國傳統的民間藝術.下列剪紙作品既不是中心對稱圖形,也不是軸對稱圖形的是()A. B. C. D.2.不透明的袋子中裝有形狀、大小、質地完全相同的6個球,其中4個黑球、2個白球,從袋子中一次摸出3個球,下列事件是不可能事件的是()A.摸出的是3個白球 B.摸出的是3個黑球C.摸出的是2個白球、1個黑球 D.摸出的是2個黑球、1個白球3.如圖,以AD為直徑的半圓O經過Rt△ABC斜邊AB的兩個端點,交直角邊AC于點E;B、E是半圓弧的三等分點,的長為,則圖中陰影部分的面積為()A. B. C. D.4.如圖是某零件的示意圖,它的俯視圖是()A. B. C. D.5.將三粒均勻的分別標有,,,,,的正六面體骰子同時擲出,朝上一面上的數字分別為,,,則,,正好是直角三角形三邊長的概率是()A. B. C. D.6.在一個直角三角形中,有一個銳角等于45°,則另一個銳角的度數是()A.75° B.60° C.45° D.30°7.在△ABC中,點D、E分別在邊AB、AC上,如果AD=1,BD=3,那么由下列條件能夠判斷DE∥BC的是()A. B. C. D.8.二次函數(a≠0)的圖象如圖所示,則下列命題中正確的是()A.a>b>cB.一次函數y=ax+c的圖象不經第四象限C.m(am+b)+b<a(m是任意實數)D.3b+2c>09.將二次函數y=x2的圖象向右平移1個單位,再向上平移2個單位后,所得圖象的函數表達式是()A.y=(x-1)2+2 B.y=(x+1)2+2 C.y=(x-1)2-2 D.y=(x+1)2-210.在Rt△ABC中,∠C=90°,AC=1,BC=3,則∠A的正切值為()A.3 B. C. D.二、填空題(共7小題,每小題3分,滿分21分)11.小剛家、公交車站、學校在一條筆直的公路旁(小剛家、學校到這條公路的距離忽略不計).一天,小剛從家出發去上學,沿這條公路步行到公交站恰好乘上一輛公交車,公交車沿這條公路勻速行駛,小剛下車時發現還有4分鐘上課,于是他沿著這條公路跑步趕到學校(上、下車時間忽略不計),小剛與學校的距離s(單位:米)與他所用的時間t(單位:分鐘)之間的函數關系如圖所示.已知小剛從家出發7分鐘時與家的距離是1200米,從上公交車到他到達學校共用10分鐘.下列說法:①公交車的速度為400米/分鐘;②小剛從家出發5分鐘時乘上公交車;③小剛下公交車后跑向學校的速度是100米/分鐘;④小剛上課遲到了1分鐘.其中正確的序號是_____.12.一個長方體的三視圖如圖所示,若其俯視圖為正方形,則這個長方體的體積為______.13.若實數a、b、c在數軸上對應點的位置如圖,則化簡:2|a+c|++3|a﹣b|=_____.14.從正n邊形一個頂點引出的對角線將它分成了8個三角形,則它的每個內角的度數是______.15.用一條長60cm的繩子圍成一個面積為216的矩形.設矩形的一邊長為xcm,則可列方程為______.16.已知拋物線y=x2上一點A,以A為頂點作拋物線C:y=x2+bx+c,點B(2,yB)為拋物線C上一點,當點A在拋物線y=x2上任意移動時,則yB的取值范圍是_________.17.邊長為3的正方形網格中,⊙O的圓心在格點上,半徑為3,則tan∠AED=_______.三、解答題(共7小題,滿分69分)18.(10分)如圖,某人在山坡坡腳A處測得電視塔尖點C的仰角為60°,沿山坡向上走到P處再測得點C的仰角為45°,已知OA=100米,山坡坡度(豎直高度與水平寬度的比)i=1:2,且O、A、B在同一條直線上.求電視塔OC的高度以及此人所在位置點P的鉛直高度.(測傾器高度忽略不計,結果保留根號形式)19.(5分)如圖1,反比例函數(x>0)的圖象經過點A(,1),射線AB與反比例函數圖象交于另一點B(1,a),射線AC與y軸交于點C,∠BAC=75°,AD⊥y軸,垂足為D.(1)求k的值;(2)求tan∠DAC的值及直線AC的解析式;(3)如圖2,M是線段AC上方反比例函數圖象上一動點,過M作直線l⊥x軸,與AC相交于點N,連接CM,求△CMN面積的最大值.20.(8分)如圖,MN是一條東西方向的海岸線,在海岸線上的A處測得一海島在南偏西32°的方向上,向東走過780米后到達B處,測得海島在南偏西37°的方向,求小島到海岸線的距離.(參考數據:tan37°=cot53°≈0.755,cot37°=tan53°≈1.327,tan32°=cot58°≈0.625,cot32°=tan58°≈1.1.)21.(10分)如圖,關于x的二次函數y=x2+bx+c的圖象與x軸交于點A(1,0)和點B與y軸交于點C(0,3),拋物線的對稱軸與x軸交于點D.(1)求二次函數的表達式;(2)在y軸上是否存在一點P,使△PBC為等腰三角形?若存在.請求出點P的坐標;(3)有一個點M從點A出發,以每秒1個單位的速度在AB上向點B運動,另一個點N從點D與點M同時出發,以每秒2個單位的速度在拋物線的對稱軸上運動,當點M到達點B時,點M、N同時停止運動,問點M、N運動到何處時,△MNB面積最大,試求出最大面積.22.(10分)計算:(-1)-1-++|1-3|23.(12分)如圖,點D為△ABC邊上一點,請用尺規過點D,作△ADE,使點E在AC上,且△ADE與△ABC相似.(保留作圖痕跡,不寫作法,只作出符合條件的一個即可)24.(14分)如圖,某校教學樓AB的后面有一建筑物CD,當光線與地面的夾角是22o時,教學樓在建筑物的墻上留下高2m的影子CE;而當光線與地面的夾角是45o時,教學樓頂A在地面上的影子F與墻角C有13m的距離(B、F、C在一條直線上).求教學樓AB的高度;學校要在A、E之間掛一些彩旗,請你求出A、E之間的距離(結果保留整數).

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、A【解題分析】試題分析:根據軸對稱圖形和中心對稱圖形的概念可知:選項A既不是中心對稱圖形,也不是軸對稱圖形,故本選項正確;選項B不是中心對稱圖形,是軸對稱圖形,故本選項錯誤;選項C既是中心對稱圖形,也是軸對稱圖形,故本選項錯誤;選項D既是中心對稱圖形,也是軸對稱圖形,故本選項錯誤.故選A.考點:中心對稱圖形;軸對稱圖形.2、A【解題分析】由題意可知,不透明的袋子中總共有2個白球,從袋子中一次摸出3個球都是白球是不可能事件,故選B.3、D【解題分析】

連接BD,BE,BO,EO,先根據B、E是半圓弧的三等分點求出圓心角∠BOD的度數,再利用弧長公式求出半圓的半徑R,再利用圓周角定理求出各邊長,通過轉化將陰影部分的面積轉化為S△ABC﹣S扇形BOE,然后分別求出面積相減即可得出答案.【題目詳解】解:連接BD,BE,BO,EO,∵B,E是半圓弧的三等分點,∴∠EOA=∠EOB=∠BOD=60°,∴∠BAD=∠EBA=30°,∴BE∥AD,∵的長為,∴解得:R=4,∴AB=ADcos30°=,∴BC=AB=,∴AC=BC=6,∴S△ABC=×BC×AC=××6=,∵△BOE和△ABE同底等高,∴△BOE和△ABE面積相等,∴圖中陰影部分的面積為:S△ABC﹣S扇形BOE=故選:D.【題目點撥】本題主要考查弧長公式,扇形面積公式,圓周角定理等,掌握圓的相關性質是解題的關鍵.4、C【解題分析】

物體的俯視圖,即是從上面看物體得到的結果;根據三視圖的定義,從上面看物體可以看到是一個正六邊形,里面是一個沒有圓心的圓,由此可以確定答案.【題目詳解】從上面看是一個正六邊形,里面是一個沒有圓心的圓.故答案選C.【題目點撥】本題考查了幾何體的三視圖,解題的關鍵是熟練的掌握幾何體三視圖的定義.5、C【解題分析】

三粒均勻的正六面體骰子同時擲出共出現216種情況,而邊長能構成直角三角形的數字為3、4、5,含這三個數字的情況有6種,故由概率公式計算即可.【題目詳解】解:因為將三粒均勻的分別標有1,2,3,4,5,6的正六面體骰子同時擲出,按出現數字的不同共=216種情況,其中數字分別為3,4,5,是直角三角形三邊長時,有6種情況,所以其概率為,故選C.【題目點撥】本題考查的是概率的求法.如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現m種結果,那么事件A的概率P(A)=.邊長為3,4,5的三角形組成直角三角形.6、C【解題分析】

根據直角三角形兩銳角互余即可解決問題.【題目詳解】解:∵直角三角形兩銳角互余,∴另一個銳角的度數=90°﹣45°=45°,故選C.【題目點撥】本題考查直角三角形的性質,記住直角三角形兩銳角互余是解題的關鍵.7、D【解題分析】

如圖,∵AD=1,BD=3,∴,當時,,又∵∠DAE=∠BAC,∴△ADE∽△ABC,∴∠ADE=∠B,∴DE∥BC,而根據選項A、B、C的條件都不能推出DE∥BC,故選D.8、D【解題分析】解:A.由二次函數的圖象開口向上可得a>0,由拋物線與y軸交于x軸下方可得c<0,由x=﹣1,得出=﹣1,故b>0,b=2a,則b>a>c,故此選項錯誤;B.∵a>0,c<0,∴一次函數y=ax+c的圖象經一、三、四象限,故此選項錯誤;C.當x=﹣1時,y最小,即a﹣b﹣c最小,故a﹣b﹣c<am2+bm+c,即m(am+b)+b>a,故此選項錯誤;D.由圖象可知x=1,a+b+c>0①,∵對稱軸x=﹣1,當x=1,y>0,∴當x=﹣3時,y>0,即9a﹣3b+c>0②①+②得10a﹣2b+2c>0,∵b=2a,∴得出3b+2c>0,故選項正確;故選D.點睛:此題主要考查了圖象與二次函數系數之間的關系,二次函數與方程之間的轉換,會利用特殊值代入法求得特殊的式子,如:y=a+b+c,然后根據圖象判斷其值.9、A【解題分析】試題分析:根據函數圖象右移減、左移加,上移加、下移減,可得答案.解:將二次函數y=x2的圖象向右平移1個單位,再向上平移2個單位后,所得圖象的函數表達式是y=(x﹣1)2+2,故選A.考點:二次函數圖象與幾何變換.10、A【解題分析】【分析】根據銳角三角函數的定義求出即可.【題目詳解】∵在Rt△ABC中,∠C=90°,AC=1,BC=3,∴∠A的正切值為=3,故選A.【題目點撥】本題考查了銳角三角函數的定義,能熟記銳角三角函數的定義的內容是解此題的關鍵.二、填空題(共7小題,每小題3分,滿分21分)11、①②③【解題分析】

由公交車在7至12分鐘時間內行駛的路程可求解其行駛速度,再由求解的速度可知公交車行駛的時間,進而可知小剛上公交車的時間;由上公交車到他到達學校共用10分鐘以及公交車行駛時間可知小剛跑步時間,進而判斷其是否遲到,再由圖可知其跑步距離,可求解小剛下公交車后跑向學校的速度.【題目詳解】解:公交車7至12分鐘時間內行駛的路程為3500-1200-300=2000m,則其速度為2000÷5=400米/分鐘,故①正確;由圖可知,7分鐘時,公交車行駛的距離為1200-400=800m,則公交車行駛的時間為800÷400=2min,則小剛從家出發7-2=5分鐘時乘上公交車,故②正確;公交車一共行駛了2800÷400=7分鐘,則小剛從下公交車到學校一共花了10-7=3分鐘<4分鐘,故④錯誤,再由圖可知小明跑步時間為300÷3=100米/分鐘,故③正確.故正確的序號是:①②③.【題目點撥】本題考查了一次函數的應用.12、1.【解題分析】試題解析:設俯視圖的正方形的邊長為.∵其俯視圖為正方形,從主視圖可以看出,正方形的對角線長為∴解得∴這個長方體的體積為4×3=1.13、﹣5a+4b﹣3c.【解題分析】

直接利用數軸結合二次根式、絕對值的性質化簡得出答案.【題目詳解】由數軸可得:a+c<0,b-c>0,a-b<0,故原式=-2(a+c)+b-c-3(a-b)=-2a-2c+b-c-3a+3b=-5a+4b-3c.故答案為-5a+4b-3c.【題目點撥】此題主要考查了二次根式以及絕對值的性質,正確化簡是解題關鍵.14、144°【解題分析】

根據多邊形內角和公式計算即可.【題目詳解】解:由題知,這是一個10邊形,根據多邊形內角和公式:每個內角等于.故答案為:144°.【題目點撥】此題重點考察學生對多邊形內角和公式的應用,掌握計算公式是解題的關鍵.15、【解題分析】

根據周長表達出矩形的另一邊,再根據矩形的面積公式即可列出方程.【題目詳解】解:由題意可知,矩形的周長為60cm,∴矩形的另一邊為:,∵面積為216,∴故答案為:.【題目點撥】本題考查了一元二次方程與實際問題,解題的關鍵是找出等量關系.16、ya≥1【解題分析】

設點A的坐標為(m,n),由題意可知n=m1,從而可知拋物線C為y=(x-m)1+n,化簡為y=x1-1mx+1m1,將x=1代入y=x1-1mx+1m1,利用二次函數的性質即可求出答案.【題目詳解】設點A的坐標為(m,n),m為全體實數,

由于點A在拋物線y=x1上,

∴n=m1,

由于以A為頂點的拋物線C為y=x1+bx+c,

∴拋物線C為y=(x-m)1+n

化簡為:y=x1-1mx+m1+n=x1-1mx+1m1,

∴令x=1,

∴ya=4-4m+1m1=1(m-1)1+1≥1,

∴ya≥1,

故答案為ya≥1【題目點撥】本題考查了二次函數的性質,解題的關鍵是根據題意求出ya=4-4m+1m1=1(m-1)1+1.17、【解題分析】

根據同弧或等弧所對的圓周角相等知∠AED=∠ABD,所以tan∠AED的值就是tanB的值.【題目詳解】解:∵∠AED=∠ABD(同弧所對的圓周角相等),∴tan∠AED=tanB=.故答案為:.【題目點撥】本題主要考查了圓周角定理、銳角三角函數的定義.解答網格中的角的三角函數值時,一般是將所求的角與直角三角形中的等角聯系起來,通過解直角三角形中的三角函數值來解答問題.三、解答題(共7小題,滿分69分)18、電視塔高為米,點的鉛直高度為(米).【解題分析】

過點P作PF⊥OC,垂足為F,在Rt△OAC中利用三角函數求出OC=100,根據山坡坡度=1:2表示出PB=x,AB=2x,在Rt△PCF中利用三角函數即可求解.【題目詳解】過點P作PF⊥OC,垂足為F.在Rt△OAC中,由∠OAC=60°,OA=100,得OC=OA?tan∠OAC=100(米),過點P作PB⊥OA,垂足為B.由i=1:2,設PB=x,則AB=2x.∴PF=OB=100+2x,CF=100﹣x.在Rt△PCF中,由∠CPF=45°,∴PF=CF,即100+2x=100﹣x,∴x=,即PB=米.【題目點撥】本題考查了特殊的直角三角形,三角函數的實際應用,中等難度,作出輔助線構造直角三角形并熟練應用三角函數是解題關鍵.19、(1);(2),;(3)【解題分析】試題分析:(1)根據反比例函數圖象上點的坐標特征易得k=2;(2)作BH⊥AD于H,如圖1,根據反比例函數圖象上點的坐標特征確定B點坐標為(1,2),則AH=2﹣1,BH=2﹣1,可判斷△ABH為等腰直角三角形,所以∠BAH=45°,得到∠DAC=∠BAC﹣∠BAH=30°,根據特殊角的三角函數值得tan∠DAC=;由于AD⊥y軸,則OD=1,AD=2,然后在Rt△OAD中利用正切的定義可計算出CD=2,易得C點坐標為(0,﹣1),于是可根據待定系數法求出直線AC的解析式為y=x﹣1;(3)利用M點在反比例函數圖象上,可設M點坐標為(t,)(0<t<2),由于直線l⊥x軸,與AC相交于點N,得到N點的橫坐標為t,利用一次函數圖象上點的坐標特征得到N點坐標為(t,t﹣1),則MN=﹣t+1,根據三角形面積公式得到S△CMN=?t?(﹣t+1),再進行配方得到S=﹣(t﹣)2+(0<t<2),最后根據二次函數的最值問題求解.試題解析:(1)把A(2,1)代入y=,得k=2×1=2;(2)作BH⊥AD于H,如圖1,把B(1,a)代入反比例函數解析式y=,得a=2,∴B點坐標為(1,2),∴AH=2﹣1,BH=2﹣1,∴△ABH為等腰直角三角形,∴∠BAH=45°,∵∠BAC=75°,∴∠DAC=∠BAC﹣∠BAH=30°,∴tan∠DAC=tan30°=;∵AD⊥y軸,∴OD=1,AD=2,∵tan∠DAC==,∴CD=2,∴OC=1,∴C點坐標為(0,﹣1),設直線AC的解析式為y=kx+b,把A(2,1)、C(0,﹣1)代入得,解得,∴直線AC的解析式為y=x﹣1;(3)設M點坐標為(t,)(0<t<2),∵直線l⊥x軸,與AC相交于點N,∴N點的橫坐標為t,∴N點坐標為(t,t﹣1),∴MN=﹣(t﹣1)=﹣t+1,∴S△CMN=?t?(﹣t+1)=﹣t2+t+=﹣(t﹣)2+(0<t<2),∵a=﹣<0,∴當t=時,S有最大值,最大值為.20、10【解題分析】試題分析:如圖:過點C作CD⊥AB于點D,在Rt△ACD中,利用∠ACD的正切可得AD=0.625CD,同樣在Rt△BCD中,可得BD=0.755CD,再根據AB=BD-CD=780,代入進行求解即可得.試題解析:如圖:過點C作CD⊥AB于點D,由已知可得:∠ACD=32°,∠BCD=37°,在Rt△ACD中,∠ADC=90°,∴AD=CD·tan∠ACD=CD·tan32°=0.625CD,在Rt△BCD中,∠BDC=90°,∴BD=CD·tan∠BCD=CD·tan37°=0.755CD,∵AB=BD-CD=780,∴0.755CD-0.625CD=780,∴CD=10,答:小島到海岸線的距離是10米.【題目點撥】本題考查了解直角三角形的應用,正確添加輔助線構造直角三角形、根據圖形靈活選用三角函數進行求解是關鍵.21、(1)二次函數的表達式為:y=x2﹣4x+3;(2)點P的坐標為:(0,3+3)或(0,3﹣3)或(0,-3)或(0,0);(3)當點M出發1秒到達D點時,△MNB面積最大,最大面積是1.此時點N在對稱軸上x軸上方2個單位處或點N在對稱軸上x軸下方2個單位處.【解題分析】

(1)把A(1,0)和C(0,3)代入y=x2+bx+c得方程組,解方程組即可得二次函數的表達式;(2)先求出點B的坐標,再根據勾股定理求得BC的長,當△PBC為等腰三角形時分三種情況進行討論:①CP=CB;②BP=BC;③PB=PC;分別根據這三種情況求出點P的坐標;(3)設AM=t則DN=2t,由AB=2,得BM=2﹣t,S△MNB=×(2﹣t)×2t=﹣t2+2t,把解析式化為頂點式,根據二次函數的性質即可得△MNB最大面積;此時點M在D點,點N在對稱軸上x軸上方2個單位處或點N在對稱軸上x軸下方2個單位處.【題目詳解】解:(1)把A(1,0)和C(0,3)代入

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論