




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
四川省隆昌市第一初級中學2024年中考數學全真模擬試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.下列運算正確的是()A.a12÷a4=a3 B.a4?a2=a8 C.(﹣a2)3=a6 D.a?(a3)2=a72.不等式2x﹣1<1的解集在數軸上表示正確的是()A. B.C. D.3.如圖,Rt△ABC中,∠C=90°,∠A=35°,點D在邊BC上,BD=2CD.把△ABC繞著點D逆時針旋轉m(0<m<180)度后,如果點B恰好落在初始Rt△ABC的邊上,那么m=()A.35° B.60° C.70° D.70°或120°4.下列事件是必然事件的是()A.任意作一個平行四邊形其對角線互相垂直B.任意作一個矩形其對角線相等C.任意作一個三角形其內角和為D.任意作一個菱形其對角線相等且互相垂直平分5.下列計算正確的是()A.﹣= B.=±2C.a6÷a2=a3 D.(﹣a2)3=﹣a66.6的相反數為A.-6 B.6 C. D.7.如圖,已知在△ABC,AB=AC.若以點B為圓心,BC長為半徑畫弧,交腰AC于點E,則下列結論一定正確的是()A.AE=EC B.AE=BE C.∠EBC=∠BAC D.∠EBC=∠ABE8.下列圖形是中心對稱圖形的是()A. B. C. D.9.如圖所示,在△ABC中,∠C=90°,AC=4,BC=3,將△ABC繞點A逆時針旋轉,使點C落在線段AB上的點E處,點B落在點D處,則BD兩點間的距離為()A.2 B. C. D.10.已知關于的方程,下列說法正確的是A.當時,方程無解B.當時,方程有一個實數解C.當時,方程有兩個相等的實數解D.當時,方程總有兩個不相等的實數解二、填空題(共7小題,每小題3分,滿分21分)11.分解因式:x2–4x+4=__________.12.若反比例函數的圖象位于第二、四象限,則的取值范圍是__.13.若關于x的方程x2﹣8x+m=0有兩個相等的實數根,則m=_____.14.甲乙兩人進行飛鏢比賽,每人各投5次,所得平均環數相等,其中甲所得環數的方差為15,乙所得環數如下:0,1,5,9,10,那么成績較穩定的是_____(填“甲”或“乙”).15.一個正四邊形的內切圓半徑與外接圓半徑之比為:_________________16.我們知道方程組的解是,現給出另一個方程組,它的解是____.17.一個多邊形,除了一個內角外,其余各角的和為2750°,則這一內角為_____度.三、解答題(共7小題,滿分69分)18.(10分)如圖,M是平行四邊形ABCD的對角線上的一點,射線AM與BC交于點F,與DC的延長線交于點H.(1)求證:AM2=MF.MH(2)若BC2=BD.DM,求證:∠AMB=∠ADC.19.(5分)有大小兩種貨車,3輛大貨車與4輛小貨車一次可以運貨18噸,2輛大貨車與6輛小貨車一次可以運貨17噸.請問1輛大貨車和1輛小貨車一次可以分別運貨多少噸?目前有33噸貨物需要運輸,貨運公司擬安排大小貨車共計10輛,全部貨物一次運完,其中每輛大貨車一次運費花費130元,每輛小貨車一次運貨花費100元,請問貨運公司應如何安排車輛最節省費用?20.(8分)我們來定義一種新運算:對于任意實數x、y,“※”為a※b=(a+1)(b+1)﹣1.(1)計算(﹣3)※9(2)嘉琪研究運算“※”之后認為它滿足交換律,你認為她的判斷(正確、錯誤)(3)請你幫助嘉琪完成她對運算“※”是否滿足結合律的證明.21.(10分)我們定義:如果一個三角形一條邊上的高等于這條邊,那么這個三角形叫做“等高底”三角形,這條邊叫做這個三角形的“等底”.(1)概念理解:如圖1,在△ABC中,AC=6,BC=3,∠ACB=30°,試判斷△ABC是否是”等高底”三角形,請說明理由.(1)問題探究:如圖1,△ABC是“等高底”三角形,BC是”等底”,作△ABC關于BC所在直線的對稱圖形得到△A'BC,連結AA′交直線BC于點D.若點B是△AA′C的重心,求的值.(3)應用拓展:如圖3,已知l1∥l1,l1與l1之間的距離為1.“等高底”△ABC的“等底”BC在直線l1上,點A在直線l1上,有一邊的長是BC的倍.將△ABC繞點C按順時針方向旋轉45°得到△A'B'C,A′C所在直線交l1于點D.求CD的值.22.(10分)已知:關于x的一元二次方程kx2﹣(4k+1)x+3k+3=0(k是整數).(1)求證:方程有兩個不相等的實數根;(2)若方程的兩個實數根都是整數,求k的值.23.(12分)已知:如圖,在四邊形ABCD中,AB∥CD,對角線AC、BD交于點E,點F在邊AB上,連接CF交線段BE于點G,CG2=GE?GD.求證:∠ACF=∠ABD;連接EF,求證:EF?CG=EG?CB.24.(14分)已知拋物線y=x2+bx+c(b,c是常數)與x軸相交于A,B兩點(A在B的左側),與y軸交于點C.(1)當A(﹣1,0),C(0,﹣3)時,求拋物線的解析式和頂點坐標;(2)P(m,t)為拋物線上的一個動點.①當點P關于原點的對稱點P′落在直線BC上時,求m的值;②當點P關于原點的對稱點P′落在第一象限內,P′A2取得最小值時,求m的值及這個最小值.
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、D【解題分析】
分別根據同底數冪的除法、乘法和冪的乘方的運算法則逐一計算即可得.【題目詳解】解:A、a12÷a4=a8,此選項錯誤;
B、a4?a2=a6,此選項錯誤;
C、(-a2)3=-a6,此選項錯誤;
D、a?(a3)2=a?a6=a7,此選項正確;
故選D.【題目點撥】本題主要考查冪的運算,解題的關鍵是掌握同底數冪的除法、乘法和冪的乘方的運算法則.2、D【解題分析】
先求出不等式的解集,再在數軸上表示出來即可.【題目詳解】移項得,2x<1+1,合并同類項得,2x<2,x的系數化為1得,x<1.在數軸上表示為:.故選D.【題目點撥】本題考查了解一元一次不等式,熟練掌握運算法則是解題的關鍵.3、D【解題分析】
①當點B落在AB邊上時,根據DB=DB1,即可解決問題,②當點B落在AC上時,在RT△DCB2中,根據∠C=90°,DB2=DB=2CD可以判定∠CB2D=30°,由此即可解決問題.【題目詳解】①當點B落在AB邊上時,∵DB=DB∴∠B=∠DB∴m=∠BDB②當點B落在AC上時,在RT△DCB∵∠C=90°,DB∴∠CB∴m=∠C+∠CB故選D.【題目點撥】本題考查的知識點是旋轉的性質,解題關鍵是考慮多種情況,進行分類討論.4、B【解題分析】
必然事件就是一定發生的事件,根據定義對各個選項進行判斷即可.【題目詳解】解:A、任意作一個平行四邊形其對角線互相垂直不一定發生,是隨機事件,故本選項錯誤;B、矩形的對角線相等,所以任意作一個矩形其對角線相等一定發生,是必然事件,故本選項正確;C、三角形的內角和為180°,所以任意作一個三角形其內角和為是不可能事件,故本選項錯誤;D、任意作一個菱形其對角線相等且互相垂直平分不一定發生,是隨機事件,故選項錯誤,故選:B.【題目點撥】解決本題需要正確理解必然事件、不可能事件、隨機事件的概念.必然事件指在一定條件下一定發生的事件.不可能事件是指在一定條件下,一定不發生的事件.不確定事件即隨機事件是指在一定條件下,可能發生也可能不發生的事件.熟練掌握相關圖形的性質也是解題的關鍵.5、D【解題分析】
根據二次根式的運算法則,同類二次根式的判斷,開算術平方根,同底數冪的除法及冪的乘方運算.【題目詳解】A.不是同類二次根式,不能合并,故A選項錯誤;B.=2≠±2,故B選項錯誤;C.
a6÷a2=a4≠a3,故C選項錯誤;D.
(?a2)3=?a6,故D選項正確.故選D.【題目點撥】本題主要考查了二次根式的運算法則,開算術平方根,同底數冪的除法及冪的乘方運算,熟記法則是解題的關鍵.6、A【解題分析】
根據相反數的定義進行求解.【題目詳解】1的相反數為:﹣1.故選A.【題目點撥】本題主要考查相反數的定義,熟練掌握相反數的定義是解答的關鍵,絕對值相等,符號相反的兩個數互為相反數.7、C【解題分析】解:∵AB=AC,∴∠ABC=∠ACB.∵以點B為圓心,BC長為半徑畫弧,交腰AC于點E,∴BE=BC,∴∠ACB=∠BEC,∴∠BEC=∠ABC=∠ACB,∴∠BAC=∠EBC.故選C.點睛:本題考查了等腰三角形的性質,當等腰三角形的底角對應相等時其頂角也相等,難度不大.8、B【解題分析】
根據中心對稱圖形的概念,軸對稱圖形與中心對稱圖形是圖形沿對稱中心旋轉180度后與原圖重合,即可解題.A、不是中心對稱圖形,故本選項錯誤;B、是中心對稱圖形,故本選項正確;C、不是中心對稱圖形,故本選項錯誤;D、不是中心對稱圖形,故本選項錯誤.故選B.考點:中心對稱圖形.【題目詳解】請在此輸入詳解!9、C【解題分析】解:連接BD.在△ABC中,∵∠C=90°,AC=4,BC=3,∴AB=2.∵將△ABC繞點A逆時針旋轉,使點C落在線段AB上的點E處,點B落在點D處,∴AE=4,DE=3,∴BE=2.在Rt△BED中,BD=.故選C.點睛:本題考查了勾股定理和旋轉的基本性質,解決此類問題的關鍵是掌握旋轉的基本性質,特別是線段之間的關系.題目整體較為簡單,適合隨堂訓練.10、C【解題分析】當時,方程為一元一次方程有唯一解.當時,方程為一元二次方程,的情況由根的判別式確定:∵,∴當時,方程有兩個相等的實數解,當且時,方程有兩個不相等的實數解.綜上所述,說法C正確.故選C.二、填空題(共7小題,每小題3分,滿分21分)11、(x–1)1【解題分析】試題分析:直接用完全平方公式分解即可,即x1﹣4x+4=(x﹣1)1.考點:分解因式.12、k>1【解題分析】
根據圖象在第二、四象限,利用反比例函數的性質可以確定1-k的符號,即可解答.【題目詳解】∵反比例函數y=的圖象在第二、四象限,∴1-k<0,∴k>1.故答案為:k>1.【題目點撥】此題主要考查了反比例函數的性質,熟練記憶當k>0時,圖象分別位于第一、三象限;當k<0時,圖象分別位于第二、四象限是解決問題的關鍵.13、1【解題分析】
根據判別式的意義得到△=(﹣8)2﹣4m=0,然后解關于m的方程即可.【題目詳解】△=(﹣8)2﹣4m=0,解得m=1,故答案為:1.【題目點撥】本題考查了根的判別式:一元二次方程ax2+bx+c=0(a≠0)的根與△=b2﹣4ac有如下關系:當△>0時,方程有兩個不相等的實數根;當△=0時,方程有兩個相等的實數根;當△<0時,方程無實數根.14、甲.【解題分析】乙所得環數的平均數為:=5,S2=[+++…+]=[++++]=16.4,甲的方差<乙的方差,所以甲較穩定.故答案為甲.點睛:要比較成績穩定即比方差大小,方差越大,越不穩定;方差越小,越穩定.15、2【解題分析】
如圖,正方形ABCD為⊙O的內接四邊形,作OH⊥AB于H,利用正方形的性質得到OH為正方形ABCD的內切圓的半徑,∠OAB=45°,然后利用等腰直角三角形的性質得OA=2OH即可解答.【題目詳解】解:如圖,正方形ABCD為⊙O的內接四邊形,作OH⊥AB于H,則OH為正方形ABCD的內切圓的半徑,∵∠OAB=45°,∴OA=2OH,∴OHOA即一個正四邊形的內切圓半徑與外接圓半徑之比為22故答案為:22【題目點撥】本題考查了正多邊形與圓的關系:把一個圓分成n(n是大于2的自然數)等份,依次連接各分點所得的多邊形是這個圓的內接正多邊形,這個圓叫做這個正多邊形的外接圓.理解正多邊形的有關概念.16、【解題分析】
觀察兩個方程組的形式與聯系,可得第二個方程組中,解之即可.【題目詳解】解:由題意得,解得.故答案為:.【題目點撥】本題考查了二元一次方程組的解,用整體代入法解決這種問題比較方便.17、130【解題分析】分析:n邊形的內角和是因而內角和一定是180度的倍數.而多邊形的內角一定大于0,并且小于180度,因而內角和除去一個內角的值,這個值除以180度,所得數值比邊數要小,小的值小于1.詳解:設多邊形的邊數為x,由題意有解得因而多邊形的邊數是18,則這一內角為故答案為點睛:考查多邊形的內角和公式,熟記多邊形的內角和公式是解題的關鍵.三、解答題(共7小題,滿分69分)18、(1)證明見解析;(2)證明見解析.【解題分析】
(1)由于AD∥BC,AB∥CD,通過三角形相似,找到分別于,都相等的比,把比例式變形為等積式,問題得證.(2)推出∽,再結合,可證得答案.【題目詳解】(1)證明:∵四邊形是平行四邊形,∴,,∴,,∴即.(2)∵四邊形是平行四邊形,∴,又∵,∴即,又∵,∴∽,∴,∵,∴,∵,∴.【題目點撥】本題考查的知識點是相似三角形的判定與性質,解題的關鍵是熟練的掌握相似三角形的判定與性質.19、(1)1輛大貨車一次可以運貨4噸,1輛小貨車一次可以運貨噸;(2)貨運公司應安排大貨車8輛時,小貨車2輛時最節省費用.【解題分析】
(1)設1輛大貨車和1輛小貨車一次可以分別運貨噸和噸,根據“3輛大貨車與4輛小貨車一次可以運貨18噸、2輛大貨車與6輛小貨車一次可以運貨17噸”列方程組求解可得;(2)因運輸33噸且用10輛車一次運完,故10輛車所運貨不低于10噸,所以列不等式,大貨車運費高于小貨車,故用大貨車少費用就小進行安排即可.【題目詳解】(1)解:設1輛大貨車一次可以運貨x噸,1輛小貨車一次可以運貨y噸,依題可得:
,
解得:.
答:1輛大貨車一次可以運貨4噸,1輛小貨車一次可以運貨噸.
(2)解:設大貨車有m輛,則小貨車10-m輛,依題可得:
4m+(10-m)≥33
m≥0
10-m≥0
解得:≤m≤10,
∴m=8,9,10;
∴當大貨車8輛時,則小貨車2輛;
當大貨車9輛時,則小貨車1輛;
當大貨車10輛時,則小貨車0輛;
設運費為W=130m+100(10-m)=30m+1000,
∵k=30〉0,
∴W隨x的增大而增大,
∴當m=8時,運費最少,
∴W=130×8+100×2=1240(元),
答:貨運公司應安排大貨車8輛時,小貨車2輛時最節省費用.【題目點撥】考查了二元一次方程組和一元一次不等式的應用,體現了數學建模思想,考查了學生用方程解實際問題的能力,解題的關鍵是根據題意建立方程組,并利用不等式求解大貨車的數量,解題時注意題意中一次運完的含義,此類試題常用的方法為建立方程,利用不等式或者一次函數性質確定方案.20、(1)-21;(2)正確;(3)運算“※”滿足結合律【解題分析】
(1)根據新定義運算法則即可求出答案.(2)只需根據整式的運算證明法則a※b=b※a即可判斷.(3)只需根據整式的運算法則證明(a※b)※c=a※(b※c)即可判斷.【題目詳解】(1)(-3)※9=(-3+1)(9+1)-1=-21(2)a※b=(a+1)(b+1)-1b※a=(b+1)(a+1)-1,∴a※b=b※a,故滿足交換律,故她判斷正確;(3)由已知把原式化簡得a※b=(a+1)(b+1)-1=ab+a+b∵(a※b)※c=(ab+a+b)※c=(ab+a+b+1)(c+1)-1=abc+ac+ab+bc+a+b+c∵a※(b※c)=a(bcv+b+c)+(bc+b+c)+a=abc+ac+ab+bc+a+b+c∴(a※b)※c=a※(b※c)∴運算“※”滿足結合律【題目點撥】本題考查新定義運算,解題的關鍵是正確理解新定義運算的法則,本題屬于中等題型.21、(1)△ABC是“等高底”三角形;(1);(3)CD的值為,1,1.【解題分析】
(1)過A作AD⊥BC于D,則△ADC是直角三角形,∠ADC=90°,根據30°所對的直角邊等于斜邊的一半可得:根據“等高底”三角形的概念即可判斷.(1)點B是的重心,得到設則根據勾股定理可得即可求出它們的比值.(3)分兩種情況進行討論:①當時和②當時.【題目詳解】(1)△ABC是“等高底”三角形;理由:如圖1,過A作AD⊥BC于D,則△ADC是直角三角形,∠ADC=90°,∵∠ACB=30°,AC=6,∴∴AD=BC=3,即△ABC是“等高底”三角形;(1)如圖1,∵△ABC是“等高底”三角形,BC是“等底”,∴∵△ABC關于BC所在直線的對稱圖形是,∴∠ADC=90°,∵點B是的重心,∴設則由勾股定理得∴(3)①當時,Ⅰ.如圖3,作AE⊥BC于E,DF⊥AC于F,∵“等高底”△ABC的“等底”為BC,l1∥l1,l1與l1之間的距離為1,.∴∴BE=1,即EC=4,∴∵△ABC繞點C按順時針方向旋轉45°得到△A'B'C,∴∠DCF=45°,設∵l1∥l1,∴∴即∴∴Ⅱ.如圖4,此時△ABC等腰直角三角形,∵△ABC繞點C按順時針方向旋轉45°得到,∴是等腰直角三角形,∴②當時,Ⅰ.如圖5,此時△ABC是等腰直角三角形,∵△ABC繞點C按順時針方向旋轉45°得到△A'B'C,∴∴Ⅱ.如圖6,作于E,則∴∴∴△ABC繞點C按順時針方向旋轉45°,得到時,點A'在直線l1上,∴∥l1,即直線與l1無交點,綜上所述,CD的值為【題目點撥】屬于新定義問題,考查對與等底高三角形概念的理解,勾股定理,等腰直角三角形的性質等,掌握等底高三角形的性質是解題的關鍵.22、(3)證明見解析(3)3或﹣3【解題分析】
(3)根據一元二次方程的定義得k≠2,再計算判別式得到△=(3k-3)3,然后根據非負數的性質,即k的取值得到△>2,則可根據判別式的意義得到結論;(3)根據求根公式求出方程的根,方程的兩個實數根都是整數,求出k的值.【題目詳解】證明:(3)△=[﹣(4k+3)]3﹣4k(3k+3)=(3k﹣3)3.∵k為整數,∴(3k﹣3)3>2,即△>2.∴方程有兩個不相等的實數根.(3)解:∵方程kx3﹣(4k+3)x+3k+3=2為一元二次方程,∴k≠2.∵kx3﹣(4k+3)x+3k+3=2,即[kx﹣(k+3)](x﹣3)=2,∴x3=3,.∵方程的兩個實數根都是整數,且k為整數,∴k=3或﹣3.【題目點撥】本題主要考查了根的判別式的知識,熟知一元二次方程的根與△的關系是解答此題的關鍵.23、(1)證明見解析;(2)證明見解析.【解題分析】試題分析:(1)先根據CG2=GE?GD得出,再由∠CGD=∠EGC可知△GCD∽△GEC,∠GDC=∠GCE.根據AB∥CD得出∠ABD=∠BDC,故可得出結論;(2)先根據∠ABD=∠ACF,∠BGF=∠CGE得出△BGF∽△CGE,故.再由∠FGE=∠BGC得出△FGE∽△BGC,進而可得出結論.試題解析:(1)∵CG2=GE?GD,∴.又∵∠CGD=∠EGC,∴△GCD∽△GEC,∴∠GDC=∠GCE.∵AB∥CD,∴∠ABD=∠BDC,∴∠ACF=∠ABD.(2)∵∠ABD=∠ACF,∠BGF=∠CGE,∴△BGF∽△CGE,∴.又∵∠FGE=∠BGC,∴△FGE∽△BGC,∴,∴FE?CG=EG?CB.考點:相似三角形的判定與性質.24、(1)拋物線的解析式為y=x3﹣3x﹣1,頂點坐標為(1
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025三亞市天涯區育才鎮社區工作者考試真題
- 2024-2025公司項目負責人安全培訓考試試題及參考答案【A卷】
- 2025企業管理人員安全培訓考試試題及參考答案【基礎題】
- 2024-2025公司級安全培訓考試試題及答案ab卷
- 2025員工三級安全培訓考試試題帶答案(突破訓練)
- 2025工廠車間安全培訓考試試題及解析答案
- 2025年公司項目部負責人安全培訓考試試題附參考答案【培優B卷】
- 2024-2025項目部治理人員安全培訓考試試題附參考答案(鞏固)
- 2025年4月河北省石家莊第四十八中學初中八年級下學期期中考試物理試題
- 江西省余江一中2025年高三階段性測試(四)英語試題含解析
- 2024復合材料和增強纖維 碳纖維增強塑料(CFRP)和金屬組件十字拉伸強度的測定
- 《油氣井增產技術》課件-63 拉鏈式壓裂井場布置
- 水利工程竣工自查報告
- 新疆維吾爾自治區新2024年中考數學模擬試卷附答案
- 2024年中國老年糖尿病診療指南解讀(2024年版)
- 震后學校維修合同書
- 李白:《將進酒》經典省公開課一等獎全國示范課微課金獎課件
- 19S406建筑排水管道安裝-塑料管道
- 教師如何有效地與家長溝通
- 第11課遼宋夏金元的經濟社會與文化教學設計-高中歷史必修中外歷史綱要上冊2
- 如何與客戶建立有效的溝通
評論
0/150
提交評論