




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
河南省駐馬店2024屆數(shù)學高一上期末復習檢測試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.集合中所含元素為A.0,1 B.,1C.,0 D.12.已知,,,則a,b,c的大小關(guān)系為()A B.C. D.3.已知函數(shù)與的圖象關(guān)于軸對稱,當函數(shù)和在區(qū)間同時遞增或同時遞減時,把區(qū)間叫做函數(shù)的“不動區(qū)間”.若區(qū)間為函數(shù)的“不動區(qū)間”,則實數(shù)的取值范圍是A. B.C. D.4.已知函數(shù)是定義域為奇函數(shù),當時,,則不等式的解集為A. B.C. D.5.已知函數(shù)f(x)=設f(0)=a,則f(a)=()A.-2 B.-1C. D.06.某幾何體的三視圖如圖所示,數(shù)量單位為cm,它的體積是()A. B.C. D.7.函數(shù)f(x)圖象大致為()A. B.C. D.8.在如圖的正方體中,M、N分別為棱BC和棱的中點,則異面直線AC和MN所成的角為()A. B.C. D.9.在特定條件下,籃球賽中進攻球員投球后,籃球的運行軌跡是開口向下的拋物線的一部分.“蓋帽”是一種常見的防守手段,防守隊員在籃球上升階段將球攔截即為“蓋帽”,而防守隊員在籃球下降階段將球攔截則屬“違規(guī)”.對于某次投籃而言,如果忽略其他因素的影響,籃球處于上升階段的水平距離越長,則被“蓋帽”的可能性越大.收集幾次籃球比賽的數(shù)據(jù)之后,某球員投籃可以簡化為下述數(shù)學模型:如圖所示,該球員的投籃出手點為P,籃框中心點為Q,他可以選擇讓籃球在運行途中經(jīng)過A,B,C,D四個點中的某一點并命中Q,忽略其他因素的影響,那么被“蓋帽”的可能性最大的線路是()A.P→A→Q B.P→B→QC.P→C→Q D.P→D→Q10.已知,則的取值范圍是()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.若函數(shù)滿足,且時,,已知函數(shù),則函數(shù)在區(qū)間內(nèi)的零點的個數(shù)為__________.12.某種候鳥每年都要隨季節(jié)的變化而進行大規(guī)模的遷徙,研究候鳥的專家發(fā)現(xiàn),該種鳥類的飛行速度(單位:m/s)與其耗氧量之間的關(guān)系為(其中、是實數(shù)).據(jù)統(tǒng)計,該種鳥類在耗氧量為80個單位時,其飛行速度為18m/s,則________;若這種候鳥飛行的速度不能低于60m/s,其耗氧量至少要________個單位.13.已知函數(shù)f(x)=|sinx|﹣cosx,給出以下四個命題:①f(x)的圖象關(guān)于y軸對稱;②f(x)在[﹣π,0]上是減函數(shù);③f(x)是周期函數(shù);④f(x)在[﹣π,π]上恰有三個零點其中真命題的序號是_____.(請寫出所有真命題的序號)14.若m,n滿足m2+5m-3=0,n2+5n-3=0,且m≠n,則的值為___________.15.化簡________.16.在正方體中,則異面直線與的夾角為_________三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知函數(shù).(1)當時,解不等式;(2)若不等式在上恒成立,求實數(shù)的取值范圍.18.某快遞公司在某市的貨物轉(zhuǎn)運中心,擬引進智能機器人分揀系統(tǒng),以提高分揀效率和降低物流成本,已知購買x臺機器人的總成本萬元.(1)若使每臺機器人的平均成本最低,問應買多少臺?(2)現(xiàn)按(1)中的數(shù)量購買機器人,需要安排m人將郵件放在機器人上,機器人將郵件送達指定落袋格口完成分揀,經(jīng)實驗知,每臺機器人的日平均分揀量(單位:件),已知傳統(tǒng)人工分揀每人每日的平均分揀量為1200件,問引進機器人后,日平均分揀量達最大值時,用人數(shù)量比引進機器人前的用人數(shù)量最多可減少多少?19.已知函數(shù)是指數(shù)函數(shù)(1)求的解析式;(2)若,求的取值范圍20.提高過江大橋的車輛通行的車輛通行能力可改善整個城市的交通狀況,在一般情況下大橋上的車流速度(單位:千米/小時)是車流密度(單位:輛/千米)的函數(shù).當橋上的車流密度達到200輛/千米時,就會造成堵塞,此時車流速度為0:當車流密度不超過20輛/千米時,車流速度為60千米/小時.研究表明:當時,車流速度是車流密度的一次函數(shù)(1)當時,求函數(shù)的表達式:(2)如果車流量(單位時間內(nèi)通過橋上某或利點的車輛數(shù))(單位:輛/小時)那么當車流密度為多大時,車流量可以達到最大,并求出最大值,(精確到1輛/小時)21.已知函數(shù).(1)求的最小正周期;(2)求的單調(diào)增區(qū)間;(3)若,求的值.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】,解,得,故選2、A【解析】比較a,b,c的值與中間值0和1的大小即可﹒【詳解】,,所以,故選:A.3、C【解析】若區(qū)間[1,2]為函數(shù)f(x)=|2x﹣t|的“不動區(qū)間”,則函數(shù)f(x)=|2x﹣t|和函數(shù)F(x)=|﹣t|在[1,2]上單調(diào)性相同,則(2x﹣t)(2﹣x﹣t)≤0在[1,2]上恒成立,進而得到答案【詳解】∵函數(shù)y=f(x)與y=F(x)的圖象關(guān)于y軸對稱,∴F(x)=f(﹣x)=|2﹣x﹣t|,∵區(qū)間[1,2]為函數(shù)f(x)=|2x﹣t|的“不動區(qū)間”,∴函數(shù)f(x)=|2x﹣t|和函數(shù)F(x)=|2﹣x﹣t|在[1,2]上單調(diào)性相同,∵y=2x﹣t和函數(shù)y=2﹣x﹣t的單調(diào)性相反,∴(2x﹣t)(2﹣x﹣t)≤0在[1,2]上恒成立,即1﹣t(2x+2﹣x)+t2≤0在[1,2]上恒成立,即2﹣x≤t≤2x在[1,2]上恒成立,即≤t≤2,故答案為:C【點睛】(1)本題主要考查不動點定義及利用定義解答數(shù)學問題的能力,考查指數(shù)函數(shù)的圖像和性質(zhì),考查不等式的恒成立問題,意在考查學生對這些知識的掌握水平和分析推理能力.(2)正確理解不動區(qū)間的定義,得到(2x﹣t)(2﹣x﹣t)≤0在[1,2]上恒成立,是解答的關(guān)鍵4、A【解析】根據(jù)題意,由函數(shù)的解析式分析可得在為增函數(shù)且,結(jié)合函數(shù)的奇偶性分析可得在上為增函數(shù),又由,則有,解可得的取值范圍,即可得答案.【詳解】根據(jù)題意,當時,,則在為增函數(shù)且,又由是定義在上的奇函數(shù),則在上也為增函數(shù),則在上為增函數(shù),由,則有,解得:,即不等式的解集為;故選:A【點睛】本題考查函數(shù)奇偶性與單調(diào)性結(jié)合,解抽象函數(shù)不等式,有一定難度.5、A【解析】根據(jù)條件先求出的值,然后代入函數(shù)求【詳解】,即,故選:A6、C【解析】由三視圖可知,此幾何體為直角梯形的四棱錐,根據(jù)四棱錐的體積公式即可求出結(jié)果.【詳解】由三視圖復原幾何體為四棱錐,如圖:它高為,底面是直角梯形,長底邊為,上底為,高為,棱錐的高垂直底面梯形的高的中點,所以幾何體的體積為:故選:C【點睛】本題考查了由三視圖求幾何體的體積,解答此類問題的關(guān)鍵是判斷幾何體的形狀以及幾何尺寸,同時需熟記錐體的體積公式,屬于基礎題.7、A【解析】根據(jù)函數(shù)圖象的特征,利用奇偶性判斷,再利用特殊值取舍.【詳解】因為f(x)=f(x),所以f(x)是奇函數(shù),排除B,C又因為,排除D故選:A【點睛】本題主要考查了函數(shù)的圖象,還考查了理解辨析的能力,屬于基礎題.8、C【解析】根據(jù)異面直線所成角的定義,找到與直線平行并且和相交的直線,即可找到異面直線所成的角,解三角形可求得結(jié)果.【詳解】連接如下圖所示,分別是棱和棱的中點,,正方體中可知,是異面直線所成的角,為等邊三角形,.故選:C.【點睛】此題是個基礎題,考查異面直線所成的角,以及解決異面直線所成的角的方法(平移法)的應用,體現(xiàn)了轉(zhuǎn)化的思想和數(shù)形結(jié)合的思想.9、B【解析】定性分析即可得到答案【詳解】B、D兩點,橫坐標相同,而D點的縱坐標大于B點的縱坐標,顯然,B點上升階段的水平距離長;A、B兩點,縱坐標相同,而A點的橫坐標小于B點的橫坐標,等經(jīng)過A點的籃球運行到與B點橫坐標相同時,顯然在B點上方,故B點上升階段的水平距離長;同理可知C點路線優(yōu)于A點路線,綜上:P→B→Q是被“蓋帽”的可能性最大的線路.故選:B10、B【解析】根據(jù)對數(shù)函數(shù)的性質(zhì)即可確定的范圍.【詳解】由對數(shù)及不等式的性質(zhì)知:,而,所以.故選:B二、填空題:本大題共6小題,每小題5分,共30分。11、10【解析】根據(jù),可得函數(shù)是以2為周期的周期函數(shù),函數(shù)在區(qū)間內(nèi)的零點的個數(shù)即為函數(shù)交點的個數(shù),作出兩個函數(shù)的圖像,結(jié)合圖像即可得出答案.【詳解】解:因為,所以,所以函數(shù)是以2為周期的周期函數(shù),令,則,在同一平面直角坐標系中作出函數(shù)的圖像,如圖所示,由圖可知函數(shù)有10個交點,所以函數(shù)在區(qū)間內(nèi)的零點有10個.故答案為:10.12、①.6②.10240【解析】由初始值解出的值,然后令,可得出的取值范圍,由此得出候鳥在飛行時速度不低于時的最低耗氧量.【詳解】由題意,知,解得,所以,要使飛行速度不能低于,則有,即,即,解得,即,所以耗氧量至少要個單位.故答案為:6;10240【點睛】本題考查對數(shù)的應用,解題的關(guān)鍵就是要利用題中數(shù)據(jù)解出函數(shù)解析式,利用題意列出不等式進行求解.13、①③【解析】求函數(shù)的奇偶性即可判斷①;結(jié)合取值范圍,可去絕對值號,結(jié)合輔助角公式求出函數(shù)的解析式,從而可求單調(diào)性即可判斷②;由f(x+2π)=f(x)可判斷③;求[﹣π,0]上的解析式,從而可求出該區(qū)間上的零點,結(jié)合函數(shù)的奇偶性即可判斷[﹣π,π]上零點個數(shù).【詳解】解:對于①,函數(shù)f(x)=sinx﹣cosx的定義域為R,且滿足f(﹣x)=f(x),所以f(x)是定義域在R上的偶函數(shù),其圖象關(guān)于y軸對稱,①為真命題;對于②,當x∈[﹣π,0]時,sinx≤0,fx對于y=2sinx+π4,x+對于③,因為f(x+2π)=|sin(x+2π)|﹣cos(x+2π)=|sinx|﹣cosx=f(x),函數(shù)f(x)是周期為2π的周期函數(shù),③為真命題;對于④,當x∈[﹣π,0]時,sinx≤0,fx=-sinx+cosx=-2sinx+π4,且x+π4∈-故答案為:①③.【點睛】關(guān)鍵點睛:在判斷命題②④時,關(guān)鍵是結(jié)合自變量的取值范圍去掉絕對值號,結(jié)合輔助角公式求出函數(shù)的解析式,再結(jié)合正弦函數(shù)的性質(zhì)進行判斷.14、【解析】由題可知是方程的兩個不同實根,根據(jù)韋達定理可求出.【詳解】由題可知是方程的兩個不同實根,則,.故答案為:.15、【解析】觀察到,故可以考慮直接用輔助角公式進行運算.【詳解】故答案為:.16、【解析】先證明,可得或其補角即為異面直線與所成的角,連接,在中求即可.【詳解】在正方體中,,所以,所以四邊形是平行四邊形,所以,所以或其補角即為異面直線與所成的角,連接,由為正方體可得是等邊三角形,所以.故答案為:【點睛】思路點睛:平移線段法是求異面直線所成角的常用方法,其基本思路是通過平移直線,把異面直線的問題化歸為共面直線問題來解決,具體步驟如下:(1)平移:平移異面直線中的一條或兩條,作出異面直線所成的角;(2)認定:證明作出的角就是所求異面直線所成的角;(3)計算:求該角的值,常利用解三角形;(4)取舍:由異面直線所成的角的取值范圍是,當所作的角為鈍角時,應取它的補角作為兩條異面直線所成的角三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】(1)根據(jù)對數(shù)函數(shù)的定義域及單調(diào)性求解即可;(2)由題意原問題轉(zhuǎn)化為在上恒成立,分與兩種情況分類討論,求出最值解不等式即可.【詳解】(1)時,函數(shù)定義域為解得不等式的解集為(2)設,由題意知,解得,在上恒成立在上恒成立令,的圖象是開口向下,對稱軸方程為的拋物線.①時,上恒成立等價于解得,這與矛盾.②當時,在上恒成立等價于解得或又綜上所述,實數(shù)的取值范圍是【點睛】關(guān)鍵點點睛:由題意轉(zhuǎn)化為在上恒成立,分類討論去掉對數(shù)符號,轉(zhuǎn)化為二次函數(shù)在上最大值或最小值,是解題的關(guān)鍵所在,屬于中檔題.18、(1)300臺;(2)90人.【解析】(1)每臺機器人的平均成本為,化簡后利用基本不等式求最小值;(2)由(1)可知,引進300臺機器人,并根據(jù)分段函數(shù)求300臺機器人日分揀量的最大值,根據(jù)最大值求若人工分揀,所需人數(shù),再與30作差求解.【詳解】(1)由總成本,可得每臺機器人的平均成本.因為.當且僅當,即時,等號成立.∴若使每臺機器人的平均成本最低,則應買300臺.(2)引進機器人后,每臺機器人的日平均分揀量為:當時,300臺機器人的日平均分揀量為∴當時,日平均分揀量有最大值144000.當時,日平均分揀量為∴300臺機器人的日平均分揀量的最大值為144000件.若傳統(tǒng)人工分揀144000件,則需要人數(shù)為(人).∴日平均分揀量達最大值時,用人數(shù)量比引進機器人前的用人數(shù)量最多可減少(人).【點睛】關(guān)鍵點點睛:本題的關(guān)鍵是理
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 歷史建筑群保護社區(qū)就業(yè)規(guī)劃基礎知識點歸納
- 2025年間歇充氣加壓裝置試題
- 依法治校賦能學校高質(zhì)量發(fā)展的策略及實施路徑
- 建筑垃圾全過程監(jiān)控與信息化管理
- 第十二單元化學與生活復習(教學設計)
- 2025至2030年中國環(huán)保型排水管行業(yè)投資前景及策略咨詢報告
- 2025至2030年中國海魴魚行業(yè)投資前景及策略咨詢報告
- 2025至2030年中國油壓彎板機行業(yè)投資前景及策略咨詢報告
- 2025至2030年中國水性上光油行業(yè)投資前景及策略咨詢報告
- 2025至2030年中國染色搖粒絨布行業(yè)投資前景及策略咨詢報告
- 遼寧省丹東市二年級數(shù)學期末模考試卷詳細答案和解析
- 2024北京西城區(qū)初一(下)期末地理試題及答案
- 【正版授權(quán)】 ISO/IEC 15421:2010 EN Information technology - Automatic identification and data capture techniques - Bar code master test specifications
- 云南省昆明市官渡區(qū)2023-2024學年五年級下學期期末考試數(shù)學試題
- 地上附著物清場合同范本
- GB/T 44092-2024體育公園配置要求
- 化工設計智慧樹知到期末考試答案章節(jié)答案2024年浙江大學
- 一例脊髓損傷患者個案護理匯報
- 2024年陜西新華出版?zhèn)髅郊瘓F有限責任公司招聘筆試沖刺題(帶答案解析)
- 農(nóng)村排灌用電安全管理
- 植入式靜脈給藥裝置(輸液港)護理專家共識
評論
0/150
提交評論