廣東省紫金縣2023-2024學(xué)年高一數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)質(zhì)量監(jiān)測試題含解析_第1頁
廣東省紫金縣2023-2024學(xué)年高一數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)質(zhì)量監(jiān)測試題含解析_第2頁
廣東省紫金縣2023-2024學(xué)年高一數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)質(zhì)量監(jiān)測試題含解析_第3頁
廣東省紫金縣2023-2024學(xué)年高一數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)質(zhì)量監(jiān)測試題含解析_第4頁
廣東省紫金縣2023-2024學(xué)年高一數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)質(zhì)量監(jiān)測試題含解析_第5頁
已閱讀5頁,還剩9頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

廣東省紫金縣2023-2024學(xué)年高一數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)質(zhì)量監(jiān)測試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共12小題,共60分)1.如圖所示,點P在正方形ABCD所在平面外,PA⊥平面ABCD,PA=AB,則PB與AC所成的角()A.90° B.60°C.45° D.30°2.已知實數(shù)滿足,那么的最小值為(

)A. B.C. D.3.已知函數(shù)且,則函數(shù)恒過定點()A. B.C. D.4.函數(shù)f(x)=-x+tanx(<x<)的圖象大致為()A. B.C. D.5.已知函數(shù)則函數(shù)的最大值是A.4 B.3C.5 D.6.已知圓C:x2+y2+2x=0與過點A(1,0)的直線l有公共點,則直線l斜率k的取值范圍是()A. B.C. D.7.已知且點在的延長線上,,則的坐標(biāo)為()A. B.C. D.8.若角的終邊過點,則A. B.C. D.9.已知為等差數(shù)列,為的前項和,且,,則公差A(yù). B.C. D.10.在中,是的().A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件11.“ω=2”是“π為函數(shù)的最小正周期”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件12.已知角的終邊上一點,且,則()A. B.C. D.二、填空題(本大題共4小題,共20分)13.設(shè)函數(shù),則________.14.函數(shù)y=的定義域是______.15.___________16.已知α∈.若冪函數(shù)f(x)=xα為奇函數(shù),且在(0,+∞)上遞減,則=______.三、解答題(本大題共6小題,共70分)17.某農(nóng)戶利用墻角線互相垂直的兩面墻,將一塊可折疊的長為am的籬笆墻圍成一個雞圈,籬笆的兩個端點A,B分別在這兩墻角線上,現(xiàn)有三種方案:方案甲:如圖1,圍成區(qū)域為三角形;方案乙:如圖2,圍成區(qū)域為矩形;方案丙:如圖3,圍成區(qū)域為梯形,且.(1)在方案乙、丙中,設(shè),分別用x表示圍成區(qū)域的面積,;(2)為使圍成雞圈面積最大,該農(nóng)戶應(yīng)該選擇哪一種方案,并說明理由.18.已知函數(shù),且的圖象經(jīng)過點(1)求的值;(2)求在區(qū)間上的最大值;(3)若,求證:在區(qū)間內(nèi)存在零點19.已知點,,,.(1)若,求的值;(2)若,求的值.20.(1)計算:;(2)已知,,求,的值.21.已知函數(shù)是定義在R上的奇函數(shù)(1)用定義法證明為增函數(shù);(2)對任意,都有恒成立,求實數(shù)k的取值范圍22.已知函數(shù),.(1)求方程的解集;(2)定義:.已知定義在上的函數(shù),求函數(shù)的解析式;(3)在(2)的條件下,在平面直角坐標(biāo)系中,畫出函數(shù)的簡圖,并根據(jù)圖象寫出函數(shù)的單調(diào)區(qū)間和最小值.

參考答案一、選擇題(本大題共12小題,共60分)1、B【解析】將原圖還原到正方體中,連接SC,AS,可確定(或其補(bǔ)角)是PB與AC所成的角.【詳解】因為ABCD為正方形,PA⊥平面ABCD,PA=AB,可將原圖還原到正方體中,連接SC,AS,則PB平行于SC,如圖所示.∴(或其補(bǔ)角)是PB與AC所成的角,∵為正三角形,∴,∴PB與AC所成角為.故選:B.2、A【解析】表示直線上的點到原點的距離,利用點到直線的距離公式求得最小值.【詳解】依題意可知表示直線上的點到原點的距離,故原點到直線的距離為最小值,即最小值為,故選A.【點睛】本小題主要考查點到直線的距離公式,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,屬于基礎(chǔ)題.3、D【解析】利用對數(shù)函數(shù)過定點求解.【詳解】令,解得,,所以函數(shù)恒過定點,故選:D4、D【解析】利用函數(shù)的奇偶性排除部分選項,再利用特殊值判斷.【詳解】因為,所以是奇函數(shù),排除BC,又因為,排除A,故選:D5、B【解析】,從而當(dāng)時,∴的最大值是考點:與三角函數(shù)有關(guān)的最值問題6、B【解析】利用點到直線的距離公式和直線和圓的位置關(guān)系直接求解【詳解】根據(jù)題意得,圓心(﹣1,0),r=1,設(shè)直線方程為y﹣0=k(x﹣1),即kx﹣y﹣k=0∴圓心到直線的距離d1,解得k故選B【點睛】本題考查直線和圓的位置關(guān)系,點到直線的距離公式,屬于基礎(chǔ)題7、D【解析】設(shè)出點的坐標(biāo),根據(jù)列式,根據(jù)向量的坐標(biāo)運算,求得點的坐標(biāo).【詳解】設(shè),依題意得,即,故,解得,所以.故選D.【點睛】本小題主要考查平面向量共線的坐標(biāo)運算,考查運算求解能力,屬于基礎(chǔ)題.8、D【解析】角的終邊過點,所以.由角,得.故選D.9、A【解析】分析:先根據(jù)已知化簡即得公差d.詳解:由題得4+4+d+4+2d=6,所以d=.故答案為A.點睛:本題主要考查等差數(shù)列的前n項和和等差數(shù)列的通項,意在考查學(xué)生對這些基礎(chǔ)知識的掌握水平.10、B【解析】根據(jù)不等式的性質(zhì),利用充分條件和必要條件的定義進(jìn)行判定,即可求解,得到答案.【詳解】在中,若,可得,滿足,即必要性成立;反之不一定成立,所以在中,是的必要不充分條件.故選B.【點睛】本題主要考查了充分條件和必要條件的判定,其中解答中熟練應(yīng)用三角函數(shù)的性質(zhì)是解答的關(guān)鍵,屬于基礎(chǔ)題.11、A【解析】直接利用正弦型函數(shù)的性質(zhì)的應(yīng)用,充分條件和必要條件的應(yīng)用判斷A、B、C、D的結(jié)論【詳解】解:當(dāng)“ω=2”時,“函數(shù)f(x)=sin(2x﹣)的最小正周期為π”當(dāng)函數(shù)f(x)=sin(ωx﹣)的最小正周期為π”,故ω=±2,故“ω=2”是“π為函數(shù)的最小正周期”的充分不必要條件;故選:A12、B【解析】由三角函數(shù)的定義可列方程解出,需注意的范圍【詳解】由三角函數(shù)定義,解得,由,知,則.故選:B.二、填空題(本大題共4小題,共20分)13、6【解析】根據(jù)分段函數(shù)的定義,分別求出和,計算即可求出結(jié)果.【詳解】由題知,,,.故答案為:6.【點睛】本題考查了分段函數(shù)求函數(shù)值的問題,考查了對數(shù)的運算.屬于基礎(chǔ)題.14、【解析】要使函數(shù)有意義,需滿足,函數(shù)定義域為考點:函數(shù)定義域15、【解析】利用、兩角和的正弦展開式進(jìn)行化簡可得答案.【詳解】故答案為:.16、-1【解析】根據(jù)冪函數(shù),當(dāng)為奇數(shù)時,函數(shù)為奇函數(shù),時,函數(shù)在(0,+∞)上遞減,即可得出答案.【詳解】解:∵冪函數(shù)f(x)=xα為奇函數(shù),∴可?。?,1,3,又f(x)=xα在(0,+∞)上遞減,∴α<0,故=-1.故答案為:-1.三、解答題(本大題共6小題,共70分)17、(1),;,.(2)農(nóng)戶應(yīng)該選擇方案三,理由見解析.【解析】(1)根據(jù)矩形面積與梯形的面積公式表示即可得答案;(2)先根據(jù)基本不等式研究方案甲得面積的最大值為,再根據(jù)二次函數(shù)的性質(zhì)結(jié)合(1)研究,的最大值即可得答案.【小問1詳解】解:對于方案乙,當(dāng)時,,所以矩形的面積,;對于方案丙,當(dāng)時,,由于所以,所以梯形面積為,.【小問2詳解】解:對于方案甲,設(shè),則,所以三角形的面積為,當(dāng)且僅當(dāng)時等號成立,故方案甲的雞圈面積最大值為.對于方案乙,由(1)得,,當(dāng)且僅當(dāng)時取得最大值.故方案乙的雞圈面積最大值為;對于方案丙,,.當(dāng)且僅當(dāng)時取得最大值.故方案丙的雞圈面積最大值為;由于所以農(nóng)戶應(yīng)該選擇方案丙,此時雞圈面積最大.18、(1)(2)(3)證明見解析【解析】(1)將點代入解析式求解;(2)根據(jù)函數(shù)單調(diào)性求解最大值;(3)零點存在性定理證明在區(qū)間內(nèi)存在零點.【小問1詳解】因為函數(shù),且的圖象經(jīng)過點,所以.所以.【小問2詳解】因為,所以.所以在區(qū)間上單調(diào)遞減.所以在區(qū)間上的最大值是.所以.所以在區(qū)間上的最大值是.【小問3詳解】因為,所以.因為,,所以,又在區(qū)間上的圖象是一條連續(xù)不斷的曲線,由零點存在性定理可得:在區(qū)間內(nèi)存在零點19、(1)(2)【解析】(1)利用列方程,化簡求得.(2)利用列方程,結(jié)合同角三角函數(shù)的基本關(guān)系式、二倍角公式、兩角差的余弦公式求得正確答案.【小問1詳解】,,,,由于,所以.【小問2詳解】若,則,,當(dāng)時,上式不符合,所以,,所以,由兩邊平方并化簡得,,所以,所以,.20、(1);(2)【解析】(1)根據(jù)指數(shù)運算與對數(shù)運算的法則計算即可;(2)先根據(jù)指對數(shù)運算得,進(jìn)而,再將其轉(zhuǎn)化為求解即可.【詳解】解:(1)原式==(2)∴,,化為:,,解得∴21、(1)證明見解析(2)【解析】(1)根據(jù)函數(shù)單調(diào)性定義及指數(shù)函數(shù)的單調(diào)性與值域即可證明;(2)由已知條件,利用函數(shù)的奇偶性和單調(diào)性,可得對恒成立,然后分離參數(shù),利用基本不等式求出最值即可得答案.【小問1詳解】證明:設(shè),則,由,可得,即,又,,所以,即,則在上為增函數(shù);【小問2詳解】解:因為任意,都有恒成立,且函數(shù)是定義在R上的奇函數(shù),所以對恒成立,又由(1)知函數(shù)在上為增函數(shù),所以對恒成立,由,有,所以對恒成立,設(shè),由遞減,可得,所以,當(dāng)且僅當(dāng)時取得等號,所以,即的取值范圍是.22、

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論