2024屆浙江省慈溪育才中學中考聯考數學試卷含解析_第1頁
2024屆浙江省慈溪育才中學中考聯考數學試卷含解析_第2頁
2024屆浙江省慈溪育才中學中考聯考數學試卷含解析_第3頁
2024屆浙江省慈溪育才中學中考聯考數學試卷含解析_第4頁
2024屆浙江省慈溪育才中學中考聯考數學試卷含解析_第5頁
已閱讀5頁,還剩13頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2024屆浙江省慈溪育才中學中考聯考數學試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖,已知點A、B、C、D在⊙O上,圓心O在∠D內部,四邊形ABCO為平行四邊形,則∠DAO與∠DCO的度數和是()A.60° B.45° C.35° D.30°2.把a?的根號外的a移到根號內得()A. B.﹣ C.﹣ D.3.地球平均半徑約等于6400000米,6400000用科學記數法表示為()A.64×105 B.6.4×105 C.6.4×106 D.6.4×1074.如圖,在已知的△ABC中,按以下步驟作圖:①分別以B、C為圓心,以大于BC的長為半徑作弧,兩弧相交于點M、N;②作直線MN交AB于點D,連接CD,則下列結論正確的是()A.CD+DB=AB B.CD+AD=AB C.CD+AC=AB D.AD+AC=AB5.如圖,若二次函數y=ax2+bx+c(a≠0)圖象的對稱軸為x=1,與y軸交于點C,與x軸交于點A、點B(﹣1,0),則①二次函數的最大值為a+b+c;②a﹣b+c<0;③b2﹣4ac<0;④當y>0時,﹣1<x<3,其中正確的個數是()A.1 B.2 C.3 D.46.下列現象,能說明“線動成面”的是()A.天空劃過一道流星B.汽車雨刷在擋風玻璃上刷出的痕跡C.拋出一塊小石子,石子在空中飛行的路線D.旋轉一扇門,門在空中運動的痕跡7.如圖,一艘海輪位于燈塔P的南偏東70°方向的M處,它以每小時40海里的速度向正北方向航行,2小時后到達位于燈塔P的北偏東40°的N處,則N處與燈塔P的距離為A.40海里 B.60海里 C.70海里 D.80海里8.如圖,圖形都是由面積為1的正方形按一定的規律組成,其中,第(1)個圖形中面積為1的正方形有2個,第(2)個圖形中面積為1的正方形有5個,第(3)個圖形中面積為1的正方形有9個,按此規律,則第(n)個圖形中面積為1的正方形的個數為()A. B. C. D.9.已知點M(-2,3)在雙曲線上,則下列一定在該雙曲線上的是()A.(3,-2) B.(-2,-3) C.(2,3) D.(3,2)10.點A(4,3)經過某種圖形變化后得到點B(-3,4),這種圖形變化可以是()A.關于x軸對稱 B.關于y軸對稱C.繞原點逆時針旋轉 D.繞原點順時針旋轉二、填空題(共7小題,每小題3分,滿分21分)11.計算(-2)×3+(-3)=_______________.12.若關于x的方程的解是正數,則m的取值范圍是____________________13.函數的定義域是________.14..如圖,圓錐側面展開得到扇形,此扇形半徑CA=6,圓心角∠ACB=120°,則此圓錐高OC的長度是_______.15.經過某十字路口的汽車,它可能繼續直行,也可能向左轉或向右轉.如果這三種可能性大小相同,現有兩輛汽車先后經過這個十字路口,則至少有一輛汽車向左轉的概率是___.16.如圖,在平面直角坐標系xOy中,點A,點B的坐標分別為(0,2),(-1,0),將線段AB沿x軸的正方向平移,若點B的對應點的坐標為B'(2,0),則點A的對應點A'的坐標為___.17.若關于x的不等式組恰有3個整數解,則字母a的取值范圍是_____.三、解答題(共7小題,滿分69分)18.(10分)如圖,在△ABC中,D為BC邊上一點,AC=DC,E為AB邊的中點,(1)尺規作圖:作∠C的平分線CF,交AD于點F(保留作圖痕跡,不寫作法);(2)連接EF,若BD=4,求EF的長.19.(5分)如圖,AB為⊙O的直徑,點D、E位于AB兩側的半圓上,射線DC切⊙O于點D,已知點E是半圓弧AB上的動點,點F是射線DC上的動點,連接DE、AE,DE與AB交于點P,再連接FP、FB,且∠AED=45°.(1)求證:CD∥AB;(2)填空:①當∠DAE=時,四邊形ADFP是菱形;②當∠DAE=時,四邊形BFDP是正方形.20.(8分)樓房AB后有一假山,其坡度為i=1:,山坡坡面上E點處有一休息亭,測得假山坡腳C與樓房水平距離BC=30米,與亭子距離CE=18米,小麗從樓房頂測得E點的俯角為45°,求樓房AB的高.(注:坡度i是指坡面的鉛直高度與水平寬度的比)21.(10分)已知,拋物線L:y=x2+bx+c與x軸交于點A和點B(-3,0),與y軸交于點C(0,3).(1)求拋物線L的頂點坐標和A點坐標.(2)如何平移拋物線L得到拋物線L1,使得平移后的拋物線L1的頂點與拋物線L的頂點關于原點對稱?(3)將拋物線L平移,使其經過點C得到拋物線L2,點P(m,n)(m>0)是拋物線L2上的一點,是否存在點P,使得△PAC為等腰直角三角形,若存在,請直接寫出拋物線L2的表達式,若不存在,請說明理由.22.(10分)△ABC在平面直角坐標系中的位置如圖所示.畫出△ABC關于y軸對稱的△A1B1C1;將△ABC向右平移6個單位,作出平移后的△A2B2C2,并寫出△A2B2C2各頂點的坐標;觀察△A1B1C1和△A2B2C2,它們是否關于某條直線對稱?若是,請在圖上畫出這條對稱軸.23.(12分)如圖,在平面直角坐標系xOy中,直線與函數的圖象的兩個交點分別為A(1,5),B.(1)求,的值;(2)過點P(n,0)作x軸的垂線,與直線和函數的圖象的交點分別為點M,N,當點M在點N下方時,寫出n的取值范圍.24.(14分)如圖,點E、F在BC上,BE=CF,AB=DC,∠B=∠C,AF與DE交于點G,求證:GE=GF.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、A【解題分析】試題解析:連接OD,∵四邊形ABCO為平行四邊形,∴∠B=∠AOC,∵點A.B.C.D在⊙O上,由圓周角定理得,解得,∵OA=OD,OD=OC,∴∠DAO=∠ODA,∠ODC=∠DCO,故選A.點睛:在同圓或等圓中,同弧或等弧所對的圓周角等于圓心角的一半.2、C【解題分析】

根據二次根式有意義的條件可得a<0,原式變形為﹣(﹣a)?,然后利用二次根式的性質得到,再把根號內化簡即可.【題目詳解】解:∵﹣>0,∴a<0,∴原式=﹣(﹣a)?,=,=﹣.故選C.【題目點撥】本題考查的是二次根式的化簡,主要是判斷根號有意義的條件,然后確定值的范圍再進行化簡,是常考題型.3、C【解題分析】

由科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數.確定n的值時,要看把原數變成a時,小數點移動了多少位,n的絕對值與小數點移動的位數相同.當原數絕對值>1時,n是正數;當原數的絕對值<1時,n是負數.【題目詳解】解:6400000=6.4×106,故選C.點睛:此題考查了科學記數法的表示方法.科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數,表示時關鍵要正確確定a的值以及n的值.4、B【解題分析】

作弧后可知MN⊥CB,且CD=DB.【題目詳解】由題意性質可知MN是BC的垂直平分線,則MN⊥CB,且CD=DB,則CD+AD=AB.【題目點撥】了解中垂線的作圖規則是解題的關鍵.5、B【解題分析】分析:直接利用二次函數圖象的開口方向以及圖象與x軸的交點,進而分別分析得出答案.詳解:①∵二次函數y=ax2+bx+c(a≠0)圖象的對稱軸為x=1,且開口向下,∴x=1時,y=a+b+c,即二次函數的最大值為a+b+c,故①正確;②當x=﹣1時,a﹣b+c=0,故②錯誤;③圖象與x軸有2個交點,故b2﹣4ac>0,故③錯誤;④∵圖象的對稱軸為x=1,與x軸交于點A、點B(﹣1,0),∴A(3,0),故當y>0時,﹣1<x<3,故④正確.故選B.點睛:此題主要考查了二次函數的性質以及二次函數最值等知識,正確得出A點坐標是解題關鍵.6、B【解題分析】

本題是一道關于點、線、面、體的題目,回憶點、線、面、體的知識;【題目詳解】解:∵A、天空劃過一道流星說明“點動成線”,∴故本選項錯誤.∵B、汽車雨刷在擋風玻璃上刷出的痕跡說明“線動成面”,∴故本選項正確.∵C、拋出一塊小石子,石子在空中飛行的路線說明“點動成線”,∴故本選項錯誤.∵D、旋轉一扇門,門在空中運動的痕跡說明“面動成體”,∴故本選項錯誤.故選B.【題目點撥】本題考查了點、線、面、體,準確認識生活實際中的現象是解題的關鍵.點動成線、線動成面、面動成體.7、D【解題分析】分析:依題意,知MN=40海里/小時×2小時=80海里,∵根據方向角的意義和平行的性質,∠M=70°,∠N=40°,∴根據三角形內角和定理得∠MPN=70°.∴∠M=∠MPN=70°.∴NP=NM=80海里.故選D.8、C【解題分析】

由圖形可知:第(1)個圖形中面積為1的正方形有2個,第(2)個圖形中面積為1的圖象有2+3=5個,第(3)個圖形中面積為1的正方形有2+3+4=9個,…,按此規律,第n個圖形中面積為1的正方形有2+3+4+…+n+1=.【題目詳解】第(1)個圖形中面積為1的正方形有2個,第(2)個圖形中面積為1的圖象有2+3=5個,第(3)個圖形中面積為1的正方形有2+3+4=9個,…,按此規律,第n個圖形中面積為1的正方形有2+3+4+…+(n+1)=個.【題目點撥】本題考查了規律的知識點,解題的關鍵是根據圖形的變化找出規律.9、A【解題分析】因為點M(-2,3)在雙曲線上,所以xy=(-2)×3=-6,四個答案中只有A符合條件.故選A10、C【解題分析】分析:根據旋轉的定義得到即可.詳解:因為點A(4,3)經過某種圖形變化后得到點B(-3,4),所以點A繞原點逆時針旋轉90°得到點B,故選C.點睛:本題考查了旋轉的性質:旋轉前后兩個圖形全等,對應點到旋轉中心的距離相等,對應點與旋轉中心的連線段的夾角等于旋轉角.二、填空題(共7小題,每小題3分,滿分21分)11、-9【解題分析】

根據有理數的計算即可求解.【題目詳解】(-2)×3+(-3)=-6-3=-9【題目點撥】此題主要考查有理數的混合運算,解題的關鍵是熟知有理數的運算法則.12、m<4且m≠2【解題分析】解方程得x=4-m,由已知可得x>0且x-2≠0,則有4-m>0且4-m-2≠0,解得:m<4且m≠2.13、x≥-1【解題分析】分析:根據二次根式的性質,被開方數大于或等于0,可以求出x的范圍.詳解:根據題意得:x+1≥0,解得:x≥﹣1.故答案為x≥﹣1.點睛:考查了函數的定義域,函數的定義域一般從三個方面考慮:(1)當函數表達式是整式時,定義域可取全體實數;(2)當函數表達式是分式時,考慮分式的分母不能為0;(1)當函數表達式是二次根式時,被開方數非負.14、4【解題分析】

先根據圓錐的側面展開圖,扇形的弧長等于該圓錐的底面圓的周長,求出OA,最后用勾股定理即可得出結論.【題目詳解】設圓錐底面圓的半徑為r,∵AC=6,∠ACB=120°,∴=2πr,∴r=2,即:OA=2,在Rt△AOC中,OA=2,AC=6,根據勾股定理得,OC==4,故答案為4.【題目點撥】本題考查了扇形的弧長公式,圓錐的側面展開圖,勾股定理,求出OA的長是解本題的關鍵.15、.【解題分析】

根據題意,畫出樹狀圖,然后根據樹狀圖和概率公式求概率即可.【題目詳解】解:畫樹狀圖得:共有9種等可能的結果,至少有一輛汽車向左轉的有5種情況,至少有一輛汽車向左轉的概率是:.故答案為:.【題目點撥】此題考查的是求概率問題,掌握樹狀圖的畫法和概率公式是解決此題的關鍵.16、(3,2)【解題分析】

根據平移的性質即可得到結論.【題目詳解】∵將線段AB沿x軸的正方向平移,若點B的對應點B′的坐標為(2,0),∵-1+3=2,∴0+3=3∴A′(3,2),故答案為:(3,2)【題目點撥】本題考查了坐標與圖形變化-平移.解決本題的關鍵是正確理解題目,按題目的敘述一定要把各點的大致位置確定,正確地作出圖形.17、﹣2≤a<﹣1.【解題分析】

先確定不等式組的整數解,再求出a的范圍即可.【題目詳解】∵關于x的不等式組恰有3個整數解,∴整數解為1,0,﹣1,∴﹣2≤a<﹣1,故答案為:﹣2≤a<﹣1.【題目點撥】本題考查了一元一次不等式組的整數解的應用,能根據已知不等式組的解集和整數解確定a的取值范圍是解此題的關鍵.三、解答題(共7小題,滿分69分)18、(1)見解析;(1)1【解題分析】

(1)根據角平分線的作圖可得;

(1)由等腰三角形的三線合一,結合E為AB邊的中點證EF為△ABD的中位線可得.【題目詳解】(1)如圖,射線CF即為所求;(1)∵∠CAD=∠CDA,∴AC=DC,即△CAD為等腰三角形;又CF是頂角∠ACD的平分線,∴CF是底邊AD的中線,即F為AD的中點,∵E是AB的中點,∴EF為△ABD的中位線,∴EF=BD=1.【題目點撥】本題主要考查作圖-基本作圖和等腰三角形的性質、中位線定理,熟練掌握等腰三角形的性質、中位線定理是解題的關鍵.19、(1)詳見解析;(2)①67.5°;②90°.【解題分析】

(1)要證明CD∥AB,只要證明∠ODF=∠AOD即可,根據題目中的條件可以證明∠ODF=∠AOD,從而可以解答本題;(2)①根據四邊形ADFP是菱形和菱形的性質,可以求得∠DAE的度數;②根據四邊形BFDP是正方形,可以求得∠DAE的度數.【題目詳解】(1)證明:連接OD,如圖所示,∵射線DC切⊙O于點D,∴OD⊥CD,即∠ODF=90°,∵∠AED=45°,∴∠AOD=2∠AED=90°,∴∠ODF=∠AOD,∴CD∥AB;(2)①連接AF與DP交于點G,如圖所示,∵四邊形ADFP是菱形,∠AED=45°,OA=OD,∴AF⊥DP,∠AOD=90°,∠DAG=∠PAG,∴∠AGE=90°,∠DAO=45°,∴∠EAG=45°,∠DAG=∠PEG=22.5°,∴∠EAD=∠DAG+∠EAG=22.5°+45°=67.5°,故答案為:67.5°;②∵四邊形BFDP是正方形,∴BF=FD=DP=PB,∠DPB=∠PBF=∠BFD=∠FDP=90°,∴此時點P與點O重合,∴此時DE是直徑,∴∠EAD=90°,故答案為:90°.【題目點撥】本題考查菱形的判定與性質、切線的性質、正方形的判定,解答本題的關鍵是明確題意,找出所求問題需要的條件,利用菱形的性質和正方形的性質解答.20、(39+9)米.【解題分析】

過點E作EF⊥BC的延長線于F,EH⊥AB于點H,根據CE=20米,坡度為i=1:,分別求出EF、CF的長度,在Rt△AEH中求出AH,繼而可得樓房AB的高.【題目詳解】解:過點E作EF⊥BC的延長線于F,EH⊥AB于點H,在Rt△CEF中,∵=tan∠ECF,∴∠ECF=30°,∴EF=CE=10米,CF=10米,∴BH=EF=10米,HE=BF=BC+CF=(25+10)米,在Rt△AHE中,∵∠HAE=45°,∴AH=HE=(25+10)米,∴AB=AH+HB=(35+10)米.答:樓房AB的高為(35+10)米.【題目點撥】本題考查解直角三角形的應用-仰角俯角問題;坡度坡角問題,掌握概念正確計算是本題的解題關鍵.21、(1)頂點(-2,-1)A(-1,0);(2)y=(x-2)2+1;(3)y=x2-x+3,,y=x2-4x+3,.【解題分析】

(1)將點B和點C代入求出拋物線L即可求解.(2)將拋物線L化頂點式求出頂點再根據關于原點對稱求出即可求解.(3)將使得△PAC為等腰直角三角形,作出所有點P的可能性,求出代入即可求解.【題目詳解】(1)將點B(-3,0),C(0,3)代入拋物線得:,解得,則拋物線.拋物線與x軸交于點A,,,A(-1,0),拋物線L化頂點式可得,由此可得頂點坐標頂點(-2,-1).(2)拋物線L化頂點式可得,由此可得頂點坐標頂點(-2,-1)拋物線L1的頂點與拋物線L的頂點關于原點對稱,對稱頂點坐標為(2,1),即將拋物線向右移4個單位,向上移2個單位.(3)使得△PAC為等腰直角三角形,作出所有點P的可能性.是等腰直角三角形,,,,,求得.,同理得,,,由題意知拋物線并將點代入得:.【題目點撥】本題主要考查拋物線綜合題,討論出P點的所有可能性是解題關鍵.22、(1)見解析;(2)見解析,A2(6,4),B2(4,2),C2(5,1);(1)△A1B1C1和△A2B2C2是軸對稱圖形,對稱軸為圖中直線l:x=1,見解析.【解題分析】

(1)根據軸對稱圖形的

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論