2024屆云南省昭通市名校中考五模數學試題含解析_第1頁
2024屆云南省昭通市名校中考五模數學試題含解析_第2頁
2024屆云南省昭通市名校中考五模數學試題含解析_第3頁
2024屆云南省昭通市名校中考五模數學試題含解析_第4頁
2024屆云南省昭通市名校中考五模數學試題含解析_第5頁
已閱讀5頁,還剩20頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2024屆云南省昭通市名校中考五模數學試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖,已知E,F分別為正方形ABCD的邊AB,BC的中點,AF與DE交于點M,O為BD的中點,則下列結論:①∠AME=90°;②∠BAF=∠EDB;③∠BMO=90°;④MD=2AM=4EM;⑤.其中正確結論的是()A.①③④ B.②④⑤ C.①③⑤ D.①③④⑤2.已知:如圖四邊形OACB是菱形,OB在X軸的正半軸上,sin∠AOB=1213.反比例函數y=kx在第一象限圖象經過點A,與BC交于點F.S△AOF=A.15 B.13 C.12 D.53.如圖,以兩條直線l1,l2的交點坐標為解的方程組是()A. B. C. D.4.如圖,在平面直角坐標系中,把△ABC繞原點O旋轉180°得到△CDA,點A,B,C的坐標分別為(﹣5,2),(﹣2,﹣2),(5,﹣2),則點D的坐標為()A.(2,2) B.(2,﹣2) C.(2,5) D.(﹣2,5)5.下列四個幾何體中,主視圖與左視圖相同的幾何體有()A.1個 B.2個 C.3個 D.4個6.已知x1,x2是關于x的方程x2+ax-2b=0的兩個實數根,且x1+x2=-2,x1·x2=1,則ba的值是()A.14 B.-17.某美術社團為練習素描,他們第一次用120元買了若干本相同的畫冊,第二次用240元在同一家商店買與上一次相同的畫冊,這次商家每本優惠4元,結果比上次多買了20本.求第一次買了多少本畫冊?設第一次買了x本畫冊,列方程正確的是()A. B.C. D.8.如圖,在⊙O中,O為圓心,點A,B,C在圓上,若OA=AB,則∠ACB=()A.15° B.30° C.45° D.60°9.如果,那么代數式的值為()A.1 B.2 C.3 D.410.如圖,以∠AOB的頂點O為圓心,適當長為半徑畫弧,交OA于點C,交OB于點D.再分別以點C、D為圓心,大于CD的長為半徑畫弧,兩弧在∠AOB內部交于點E,過點E作射線OE,連接CD.則下列說法錯誤的是A.射線OE是∠AOB的平分線B.△COD是等腰三角形C.C、D兩點關于OE所在直線對稱D.O、E兩點關于CD所在直線對稱二、填空題(共7小題,每小題3分,滿分21分)11.PA、PB分別切⊙O于點A、B,∠PAB=60°,點C在⊙O上,則∠ACB的度數為_____.12.如圖,在邊長為1正方形ABCD中,點P是邊AD上的動點,將△PAB沿直線BP翻折,點A的對應點為點Q,連接BQ、DQ.則當BQ+DQ的值最小時,tan∠ABP=_____.13.如圖,正方形ABCD邊長為1,以AB為直徑作半圓,點P是CD中點,BP與半圓交于點Q,連結DQ.給出如下結論:①DQ=1;②;③S△PDQ=;④cos∠ADQ=.其中正確結論是_________.(填寫序號)14.如圖,將△ABC繞點A逆時針旋轉100°,得到△ADE.若點D在線段BC的延長線上,則的大小為________.15.如圖,AB為圓O的直徑,弦CD⊥AB,垂足為點E,連接OC,若OC=5,CD=8,則AE=______.16.已知關于x的方程x2﹣2x﹣m=0沒有實數根,那么m的取值范圍是_____.17.某商品每件標價為150元,若按標價打8折后,再降價10元銷售,仍獲利10%,則該商品每件的進價為_________元.三、解答題(共7小題,滿分69分)18.(10分)(1)解方程:x2﹣5x﹣6=0;(2)解不等式組:.19.(5分)在圍棋盒中有x顆黑色棋子和y顆白色棋子,從盒中隨機地取出一個棋子,如果它是黑色棋子的概率是;如果往盒中再放進10顆黑色棋子,則取得黑色棋子的概率變為.求x和y的值.20.(8分)如圖,矩形ABCD中,E是AD的中點,延長CE,BA交于點F,連接AC,DF.(1)求證:四邊形ACDF是平行四邊形;(2)當CF平分∠BCD時,寫出BC與CD的數量關系,并說明理由.21.(10分)如圖,過點A(2,0)的兩條直線,分別交y軸于B,C,其中點B在原點上方,點C在原點下方,已知AB=.求點B的坐標;若△ABC的面積為4,求的解析式.22.(10分)如圖,矩形ABCD中,點E為BC上一點,DF⊥AE于點F,求證:∠AEB=∠CDF.23.(12分)△ABC在平面直角坐標系中的位置如圖所示.畫出△ABC關于y軸對稱的△A1B1C1;將△ABC向右平移6個單位,作出平移后的△A2B2C2,并寫出△A2B2C2各頂點的坐標;觀察△A1B1C1和△A2B2C2,它們是否關于某條直線對稱?若是,請在圖上畫出這條對稱軸.24.(14分)如圖,在平面直角坐標系中,四邊形的頂點是坐標原點,點在第一象限,點在第四象限,點在軸的正半軸上,且.(1)求點和點的坐標;(2)點是線段上的一個動點(點不與點重合),以每秒個單位的速度由點向點運動,過點的直線與軸平行,直線交邊或邊于點,交邊或邊于點,設點.運動時間為,線段的長度為,已知時,直線恰好過點.①當時,求關于的函數關系式;②點出發時點也從點出發,以每秒個單位的速度向點運動,點停止時點也停止.設的面積為,求與的函數關系式;③直接寫出②中的最大值是.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、D【解題分析】

根據正方形的性質可得AB=BC=AD,∠ABC=∠BAD=90°,再根據中點定義求出AE=BF,然后利用“邊角邊”證明△ABF和△DAE全等,根據全等三角形對應角相等可得∠BAF=∠ADE,然后求出∠ADE+∠DAF=∠BAD=90°,從而求出∠AMD=90°,再根據鄰補角的定義可得∠AME=90°,從而判斷①正確;根據中線的定義判斷出∠ADE≠∠EDB,然后求出∠BAF≠∠EDB,判斷出②錯誤;根據直角三角形的性質判斷出△AED、△MAD、△MEA三個三角形相似,利用相似三角形對應邊成比例可得,然后求出MD=2AM=4EM,判斷出④正確,設正方形ABCD的邊長為2a,利用勾股定理列式求出AF,再根據相似三角形對應邊成比例求出AM,然后求出MF,消掉a即可得到AM=MF,判斷出⑤正確;過點M作MN⊥AB于N,求出MN、NB,然后利用勾股定理列式求出BM,過點M作GH∥AB,過點O作OK⊥GH于K,然后求出OK、MK,再利用勾股定理列式求出MO,根據正方形的性質求出BO,然后利用勾股定理逆定理判斷出∠BMO=90°,從而判斷出③正確.【題目詳解】在正方形ABCD中,AB=BC=AD,∠ABC=∠BAD=90°,

∵E、F分別為邊AB,BC的中點,

∴AE=BF=BC,

在△ABF和△DAE中,,

∴△ABF≌△DAE(SAS),

∴∠BAF=∠ADE,

∵∠BAF+∠DAF=∠BAD=90°,

∴∠ADE+∠DAF=∠BAD=90°,

∴∠AMD=180°-(∠ADE+∠DAF)=180°-90°=90°,

∴∠AME=180°-∠AMD=180°-90°=90°,故①正確;

∵DE是△ABD的中線,

∴∠ADE≠∠EDB,

∴∠BAF≠∠EDB,故②錯誤;

∵∠BAD=90°,AM⊥DE,

∴△AED∽△MAD∽△MEA,

∴∴AM=2EM,MD=2AM,

∴MD=2AM=4EM,故④正確;

設正方形ABCD的邊長為2a,則BF=a,

在Rt△ABF中,AF=∵∠BAF=∠MAE,∠ABC=∠AME=90°,

∴△AME∽△ABF,

∴,

即,

解得AM=

∴MF=AF-AM=,

∴AM=MF,故⑤正確;

如圖,過點M作MN⊥AB于N,

則即解得MN=,AN=,

∴NB=AB-AN=2a-=,

根據勾股定理,BM=過點M作GH∥AB,過點O作OK⊥GH于K,

則OK=a-=,MK=-a=,

在Rt△MKO中,MO=根據正方形的性質,BO=2a×,

∵BM2+MO2=

∴BM2+MO2=BO2,

∴△BMO是直角三角形,∠BMO=90°,故③正確;

綜上所述,正確的結論有①③④⑤共4個.故選:D【題目點撥】本題考查了正方形的性質,全等三角形的判定與性質,相似三角形的判定與性質,勾股定理的應用,勾股定理逆定理的應用,綜合性較強,難度較大,仔細分析圖形并作出輔助線構造出直角三角形與相似三角形是解題的關鍵.2、A【解題分析】

過點A作AM⊥x軸于點M,設OA=a,通過解直角三角形找出點A的坐標,再根據四邊形OACB是菱形、點F在邊BC上,即可得出S△AOF=S菱形OBCA,結合菱形的面積公式即可得出a的值,進而依據點A的坐標得到k的值.【題目詳解】過點A作AM⊥x軸于點M,如圖所示.設OA=a=OB,則,在Rt△OAM中,∠AMO=90°,OA=a,sin∠AOB=1213∴AM=OA?sin∠AOB=1213a,OM=5∴點A的坐標為(513a,12∵四邊形OACB是菱形,S△AOF=392∴12OB×AM=39即12×a×12解得a=±132∴a=132,即A(5∵點A在反比例函數y=kx∴k=52故選A.【解答】解:【點評】本題考查了菱形的性質、解直角三角形以及反比例函數圖象上點的坐標特征,解題的關鍵是利用S△AOF=12S菱形OBCA3、C【解題分析】

兩條直線的交點坐標應該是聯立兩個一次函數解析式所組成的方程組的解.因此本題需先根據兩直線經過的點的坐標,用待定系數法求出兩直線的解析式.然后聯立兩函數的解析式可得出所求的方程組.【題目詳解】直線l1經過(2,3)、(0,-1),易知其函數解析式為y=2x-1;直線l2經過(2,3)、(0,1),易知其函數解析式為y=x+1;因此以兩條直線l1,l2的交點坐標為解的方程組是:.故選C.【題目點撥】本題主要考查了函數解析式與圖象的關系,滿足解析式的點就在函數的圖象上,在函數的圖象上的點,就一定滿足函數解析式.函數圖象交點坐標為兩函數解析式組成的方程組的解.4、A【解題分析】分析:依據四邊形ABCD是平行四邊形,即可得到BD經過點O,依據B的坐標為(﹣2,﹣2),即可得出D的坐標為(2,2).詳解:∵點A,C的坐標分別為(﹣5,2),(5,﹣2),∴點O是AC的中點,∵AB=CD,AD=BC,∴四邊形ABCD是平行四邊形,∴BD經過點O,∵B的坐標為(﹣2,﹣2),∴D的坐標為(2,2),故選A.點睛:本題主要考查了坐標與圖形變化,圖形或點旋轉之后要結合旋轉的角度和圖形的特殊性質來求出旋轉后的點的坐標.5、D【解題分析】解:①正方體的主視圖與左視圖都是正方形;②球的主視圖與左視圖都是圓;③圓錐主視圖與左視圖都是三角形;④圓柱的主視圖和左視圖都是長方形;故選D.6、A【解題分析】

根據根與系數的關系和已知x1+x2和x1?x2的值,可求a、b的值,再代入求值即可.【題目詳解】解:∵x1,x2是關于x的方程x2+ax﹣2b=0的兩實數根,∴x1+x2=﹣a=﹣2,x1?x2=﹣2b=1,解得a=2,b=-1∴ba=(-12)2=故選A.7、A【解題分析】分析:由設第一次買了x本資料,則設第二次買了(x+20)本資料,由等量關系:第二次比第一次每本優惠4元,即可得到方程.詳解:設他上月買了x本筆記本,則這次買了(x+20)本,根據題意得:.故選A.點睛:本題考查了分式方程的應用,解答本題的關鍵是讀懂題意,設出未知數,找出合適的等量關系,列方程解答即可.8、B【解題分析】

根據題意得到△AOB是等邊三角形,求出∠AOB的度數,根據圓周角定理計算即可.【題目詳解】解:∵OA=AB,OA=OB,∴△AOB是等邊三角形,∴∠AOB=60°,∴∠ACB=30°,故選B.【題目點撥】本題考查的是圓周角定理和等邊三角形的判定,掌握在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半是解題的關鍵.9、A【解題分析】

先計算括號內分式的減法,再將除法轉化為乘法,最后約分即可化簡原式,繼而將3x=4y代入即可得.【題目詳解】解:∵原式===∵3x-4y=0,∴3x=4y原式==1故選:A.【題目點撥】本題主要考查分式的化簡求值,解題的關鍵是熟練掌握分式的混合運算順序和運算法則.10、D【解題分析】試題分析:A、連接CE、DE,根據作圖得到OC=OD,CE=DE.∵在△EOC與△EOD中,OC=OD,CE=DE,OE=OE,∴△EOC≌△EOD(SSS).∴∠AOE=∠BOE,即射線OE是∠AOB的平分線,正確,不符合題意.B、根據作圖得到OC=OD,∴△COD是等腰三角形,正確,不符合題意.C、根據作圖得到OC=OD,又∵射線OE平分∠AOB,∴OE是CD的垂直平分線.∴C、D兩點關于OE所在直線對稱,正確,不符合題意.D、根據作圖不能得出CD平分OE,∴CD不是OE的平分線,∴O、E兩點關于CD所在直線不對稱,錯誤,符合題意.故選D.二、填空題(共7小題,每小題3分,滿分21分)11、60°或120°.【解題分析】

連接OA、OB,根據切線的性質得出∠OAP的度數,∠OBP的度數;再根據四邊形的內角和是360°,求出∠AOB的度數,有圓周角定理或圓內接四邊形的性質,求出∠ACB的度數即可.【題目詳解】解:連接OA、OB.∵PA,PB分別切⊙O于點A,B,∴OA⊥PA,OB⊥PB;∴∠PAO=∠PBO=90°;又∵∠APB=60°,∴在四邊形AOBP中,∠AOB=360°﹣90°﹣90°﹣60°=120°,∴即當C在D處時,∠ACB=60°.在四邊形ADBC中,∠ACB=180°﹣∠ADB=180°﹣60°=120°.于是∠ACB的度數為60°或120°,故答案為60°或120°.【題目點撥】本題考查的是切線的性質定理,圓內接四邊形的性質,是一道基礎題.12、﹣1【解題分析】

連接DB,若Q點落在BD上,此時和最短,且為,設AP=x,則PD=1﹣x,PQ=x.解直角三角形得到AP=﹣1,根據三角函數的定義即可得到結論.【題目詳解】如圖:連接DB,若Q點落在BD上,此時和最短,且為,設AP=x,則PD=1﹣x,PQ=x.∵∠PDQ=45°,∴PD=PQ,即1﹣x=,∴x=﹣1,∴AP=﹣1,∴tan∠ABP==﹣1,故答案為:﹣1.【題目點撥】本題考查了翻折變換(折疊問題),正方形的性質,軸對稱﹣最短路線問題,正確的理解題意是解題的關鍵.13、①②④【解題分析】

①連接OQ,OD,如圖1.易證四邊形DOBP是平行四邊形,從而可得DO∥BP.結合OQ=OB,可證到∠AOD=∠QOD,從而證到△AOD≌△QOD,則有DQ=DA=1;

②連接AQ,如圖4,根據勾股定理可求出BP.易證Rt△AQB∽Rt△BCP,運用相似三角形的性質可求出BQ,從而求出PQ的值,就可得到的值;③過點Q作QH⊥DC于H,如圖4.易證△PHQ∽△PCB,運用相似三角形的性質可求出QH,從而可求出S△DPQ的值;④過點Q作QN⊥AD于N,如圖3.易得DP∥NQ∥AB,根據平行線分線段成比例可得,把AN=1-DN代入,即可求出DN,然后在Rt△DNQ中運用三角函數的定義,就可求出cos∠ADQ的值.【題目詳解】解:①連接OQ,OD,如圖1.易證四邊形DOBP是平行四邊形,從而可得DO∥BP.結合OQ=OB,可證到∠AOD=∠QOD,從而證到△AOD≌△QOD,則有DQ=DA=1.故①正確;②連接AQ,如圖4.則有CP=,BP=.易證Rt△AQB∽Rt△BCP,運用相似三角形的性質可求得BQ=,則PQ=,∴.故②正確;③過點Q作QH⊥DC于H,如圖4.易證△PHQ∽△PCB,運用相似三角形的性質可求得QH=,∴S△DPQ=DP?QH=××=.故③錯誤;④過點Q作QN⊥AD于N,如圖3.易得DP∥NQ∥AB,根據平行線分線段成比例可得,則有,解得:DN=.由DQ=1,得cos∠ADQ=.故④正確.綜上所述:正確結論是①②④.故答案為:①②④.【題目點撥】本題主要考查了圓周角定理、平行四邊形的判定與性質、相似三角形的判定與性質、全等三角形的判定與性質、平行線分線段成比例、等腰三角形的性質、平行線的性質、銳角三角函數的定義、勾股定理等知識,綜合性比較強,常用相似三角形的性質、勾股定理、三角函數的定義來建立等量關系,應靈活運用.14、40°【解題分析】

根據旋轉的性質可得出AB=AD、∠BAD=100°,再根據等腰三角形的性質可求出∠B的度數,此題得解.【題目詳解】根據旋轉的性質,可得:AB=AD,∠BAD=100°,∴∠B=∠ADB=×(180°?100°)=40°.故填:40°.【題目點撥】本題考查了旋轉的性質以及等腰三角形的性質,根據旋轉的性質結合等腰三角形的性質求出∠B的度數是解題的關鍵.15、2【解題分析】試題解析:∵AB為圓O的直徑,弦CD⊥AB,垂足為點E.在直角△OCE中,則AE=OA?OE=5?3=2.故答案為2.16、m<﹣1.【解題分析】

根據根的判別式得出b2﹣4ac<0,代入求出不等式的解集即可得到答案.【題目詳解】∵關于x的方程x2﹣2x﹣m=0沒有實數根,∴b2﹣4ac=(﹣2)2﹣4×1×(﹣m)<0,解得:m<﹣1,故答案為:m<﹣1.【題目點撥】本題考查了一元二次方程ax2+bx+c=0(a≠0)的根的判別式?=b2﹣4ac與根的關系,熟練掌握根的判別式與根的關系式解答本題的關鍵.當?>0時,一元二次方程有兩個不相等的實數根;當?=0時,一元二次方程有兩個相等的實數根;當?<0時,一元二次方程沒有實數根.17、1【解題分析】試題分析:設該商品每件的進價為x元,則150×80%-10-x=x×10%,解得x=1.即該商品每件的進價為1元.故答案為1.點睛:此題主要考查了一元一次方程的應用,解決本題的關鍵是得到商品售價的等量關系.三、解答題(共7小題,滿分69分)18、(1)x1=6,x2=﹣1;(2)﹣1≤x<1.【解題分析】

(1)先分解因式,即可得出兩個一元一次方程,求出方程的解即可;(2)先求出不等式的解集,再求出不等式組的解集即可.【題目詳解】(1)x2﹣5x﹣6=0,(x﹣6)(x+1)=0,x﹣6=0,x+1=0,x1=6,x2=﹣1;(2)∵解不等式①得:x≥﹣1,解不等式②得:x<1,∴不等式組的解集為﹣1≤x<1.【題目點撥】本題考查了解一元一次不等式組和解一元二次方程,能把一元二次方程轉化成一元一次方程是解(1)的關鍵,能根據不等式的解集找出不等式組的解集是解(2)的關鍵.19、x=15,y=1【解題分析】

根據概率的求法:在圍棋盒中有x顆黑色棋子和y顆白色棋子,共x+y顆棋子,如果它是黑色棋子的概率是,有成立.化簡可得y與x的函數關系式;

(2)若往盒中再放進10顆黑色棋子,在盒中有10+x+y顆棋子,則取得黑色棋子的概率變為,結合(1)的條件,可得,解可得x=15,y=1.【題目詳解】依題意得,,化簡得,,解得,.,檢驗當x=15,y=1時,,,∴x=15,y=1是原方程的解,經檢驗,符合題意.答:x=15,y=1.【題目點撥】此題考查概率的求法:如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現m種結果,那么事件A的概率P(A)=.20、(1)證明見解析;(2)BC=2CD,理由見解析.【解題分析】分析:(1)利用矩形的性質,即可判定△FAE≌△CDE,即可得到CD=FA,再根據CD∥AF,即可得出四邊形ACDF是平行四邊形;(2)先判定△CDE是等腰直角三角形,可得CD=DE,再根據E是AD的中點,可得AD=2CD,依據AD=BC,即可得到BC=2CD.詳解:(1)∵四邊形ABCD是矩形,∴AB∥CD,∴∠FAE=∠CDE,∵E是AD的中點,∴AE=DE,又∵∠FEA=∠CED,∴△FAE≌△CDE,∴CD=FA,又∵CD∥AF,∴四邊形ACDF是平行四邊形;(2)BC=2CD.證明:∵CF平分∠BCD,∴∠DCE=45°,∵∠CDE=90°,∴△CDE是等腰直角三角形,∴CD=DE,∵E是AD的中點,∴AD=2CD,∵AD=BC,∴BC=2CD.點睛:本題主要考查了矩形的性質以及平行四邊形的判定與性質,要證明兩直線平行和兩線段相等、兩角相等,可考慮將要證的直線、線段、角、分別置于一個四邊形的對邊或對角的位置上,通過證明四邊形是平行四邊形達到上述目的.21、(1)(0,3);(2).【解題分析】

(1)在Rt△AOB中,由勾股定理得到OB=3,即可得出點B的坐標;(2)由=BC?OA,得到BC=4,進而得到C(0,-1).設的解析式為,把A(2,0),C(0,-1)代入即可得到的解析式.【題目詳解】(1)在Rt△AOB中,∵,∴,∴OB=3,∴點B的坐標是(0,3).(2)∵=BC?OA,∴BC×2=4,∴BC=4,∴C(0,-1).設的解析式為,把A(2,0),C(0,-1)代入得:,∴,∴的解析式為是.考點:一次函數的性質.22、見解析.【解題分析】

利用矩形的性質結合平行線的性質得出∠CDF+∠ADF=90°,進而得出∠CDF=∠DAF,由AD∥BC,得出答案.【題目詳解】∵四邊形ABCD是矩形,∴∠ADC=90°,AD∥BC,∴∠CDF+∠AD

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論