陜西省西藏民族學院附屬中學2023年數學高二上期末學業質量監測試題含解析_第1頁
陜西省西藏民族學院附屬中學2023年數學高二上期末學業質量監測試題含解析_第2頁
陜西省西藏民族學院附屬中學2023年數學高二上期末學業質量監測試題含解析_第3頁
陜西省西藏民族學院附屬中學2023年數學高二上期末學業質量監測試題含解析_第4頁
陜西省西藏民族學院附屬中學2023年數學高二上期末學業質量監測試題含解析_第5頁
已閱讀5頁,還剩10頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

陜西省西藏民族學院附屬中學2023年數學高二上期末學業質量監測試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.如圖為某幾何體的三視圖,則該幾何體中最大的側面積是()A.B.C.D.2.如圖,在平行六面體中,M為與的交點,若,,,則下列向量中與相等的向量是()A. B.C. D.3.過拋物線的焦點的直線交拋物線于不同的兩點,則的值為A.2 B.1C. D.44.已知是空間的一個基底,若,,若,則()A B.C.3 D.5.命題“對任意,都有”的否定是()A.對任意,都有 B.存在,使得C.對任意,都有 D.存在,使得6.若定義在R上的函數滿足,則不等式的解集為()A. B.C. D.7.圓與圓的位置關系為()A.外切 B.內切C.相交 D.相離8.拋物線y=4x2的焦點坐標是()A.(0,1) B.(1,0)C. D.9.如圖,在正方體中,是側面內一動點,若到直線與直線的距離相等,則動點的軌跡所在的曲線是()A.直線 B.圓C.雙曲線 D.拋物線10.直線分別交坐標軸于A,B兩點,O為坐標原點,三角形OAB的內切圓上有動點P,則的最小值為()A.16 B.18C.20 D.2211.在中,B=30°,BC=2,AB=,則邊AC的長等于()A. B.1C. D.212.彬塔,又稱開元寺塔、彬縣塔,民間稱“雷峰塔”,位于陜西省彬縣城內西南紫薇山下.某同學為測量彬塔的高度,選取了與塔底在同一水平面內的兩個測量基點與,現測得,,,在點測得塔頂的仰角為60°,則塔高()A.30m B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知等差數列的公差,等比數列的公比q為正整數,若,,且是正整數,則______14.等比數列的各項均為正數,且,則__________.15.雙曲線的右焦點到C的漸近線的距離為,則C漸近線方程為______16.橢圓的右焦點是,兩點是橢圓的左頂點和上頂點,若△是直角三角形,則橢圓的離心率是________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知,對于有限集,令表示集合中元素的個數.例如:當時,,(1)當時,請直接寫出集合的子集的個數;(2)當時,,都是集合的子集(,可以相同),并且.求滿足條件的有序集合對的個數;(3)假設存在集合、具有以下性質:將1,1,2,2,··,,.這個整數按某種次序排成一列,使得在這個序列中,對于任意,與之間恰好排列個整數.證明:是4的倍數18.(12分)已知拋物線的焦點F,C上一點到焦點的距離為5(1)求C的方程;(2)過F作直線l,交C于A,B兩點,若線段AB中點的縱坐標為-1,求直線l的方程19.(12分)已知橢圓C:的長軸長為4,過C的一個焦點且與x軸垂直的直線被C截得的線段長為3(1)求C的方程;(2)若直線:與C交于A,B兩點,線段AB的中垂線與C交于P,Q兩點,且,求m的值20.(12分)已知定圓,過的一條動直線與圓相交于、兩點,(1)當與定直線垂直時,求出與的交點的坐標,并證明過圓心;(2)當時,求直線的方程21.(12分)已知等差數列公差不為0,且成等比數列.(1)求數列的通項公式及其前n項和;(2)記,求數列的前n項和.22.(10分)已知數列為等差數列,公差,前項和為,,且成等比數列(1)求數列的通項公式(2)設,求數列的前項和

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】由三視圖還原原幾何體,確定幾何體的結構,計算各面面積可得【詳解】由三視圖,原幾何體是三棱錐,平面,,尺寸見三視圖,,,故選:B2、A【解析】利用空間向量的三角形法則可得,結合平行六面體的性質分析解答【詳解】平行六面體中,M為與的交點,,,,則有:,所以.故選:A3、D【解析】本題首先可以通過直線交拋物線于不同的兩點確定直線的斜率存在,然后設出直線方程并與拋物線方程聯立,求出以及的值,然后通過拋物線的定義將化簡,最后得出結果【詳解】因為直線交拋物線于不同的兩點,所以直線的斜率存在,設過拋物線的焦點的直線方程為,由可得,,因為拋物線的準線方程為,所以根據拋物線的定義可知,,所以,綜上所述,故選D【點睛】本題考查了拋物線的相關性質,主要考查了拋物線的定義、過拋物線焦點的直線與拋物線相交的相關性質,考查了計算能力,是中檔題4、C【解析】由,可得存在實數,使,然后將代入化簡可求得結果【詳解】,,因為,所以存在實數,使,所以,所以,所以,得,,所以,故選:C5、B【解析】根據全稱命題的否定是特稱命題形式,可判斷正確答案.【詳解】因為全稱命題的否定是特稱命題,所以命題“對任意,都有”的否定是“存在,使得”故選:B.6、B【解析】構造函數,根據題意,求得其單調性,利用函數單調性解不等式即可.【詳解】構造函數,則,故在上單調遞減;又,故可得,則,即,解得,故不等式解集為.故選:B.【點睛】本題考察利用導數研究函數單調性,以及利用函數單調性求解不等式,解決本題的關鍵是根據題意構造函數,屬中檔題.7、A【解析】根據兩圓半徑和、差、圓心距之間的大小關系進行判斷即可.【詳解】由,該圓的圓心為,半徑為.圓圓心為,半徑為,因為兩圓的圓心距為,兩圓的半徑和為,所以兩圓的半徑和等于兩圓的圓心距,因此兩圓相外切,故選:A8、C【解析】將拋物線方程化為標準方程,由此可拋物線的焦點坐標得選項.【詳解】解:將拋物線y=4x2的化為標準方程為x2=y,p=,開口向上,焦點在y軸的正半軸上,故焦點坐標為(0,).故選:C9、D【解析】由到直線的距離等于到點的距離可得到直線的距離等于到點的距離,然后可得答案.【詳解】因為到直線的距離等于到點的距離,所以到直線的距離等于到點的距離,所以動點的軌跡是以為焦點、為準線的拋物線故選:D10、B【解析】由題意,求出內切圓的半徑和圓心坐標,設,則,由表示內切圓上的動點P到定點的距離的平方,從而即可求解最小值.【詳解】解:因為直線分別交坐標軸于A,B兩點,所以設,則,因為,所以三角形OAB的內切圓半徑,內切圓圓心為,所以內切圓的方程為,設,則,因為表示內切圓上的動點P到定點的距離的平方,且在內切圓內,所以,所以,,即的最小值為18,故選:B.11、B【解析】利用余弦定理即得【詳解】由余弦定理,得,解得AC=1故選:B.12、D【解析】在△中有,再應用正弦定理求,再在△中,即可求塔高.【詳解】由題設知:,又,△中,可得,在△中,,則.故選:D二、填空題:本題共4小題,每小題5分,共20分。13、【解析】由已知等差、等比數列以及,,是正整數,可得,結合q為正整數,進而求.【詳解】由,,令,其中m為正整數,有,又為正整數,所以當時,解得,當時,解得不是正整數,故答案為:14、10【解析】由等比數列的性質可得,再利用對數的性質可得結果【詳解】解:因為等比數列的各項均為正數,且,所以,所以故答案為:1015、【解析】根據給定條件求出雙曲線漸近線,再用點到直線的距離公式計算作答【詳解】雙曲線的漸近線為:,即,依題意,,即,解得,所以C漸近線方程為.故答案為:16、【解析】由題設易知,應用斜率的兩點式及橢圓參數關系可得,進而求橢圓離心率.【詳解】由題設,,,,又△是直角三角形,顯然,所以,可得,則,解得,又,所以.故答案為:.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)8(2)454(3)證明見詳解【解析】(1)n元集合的直接個數為可得;(2)由已知結合可得,或,然后可得集合的包含關系可解;(3)根據每兩個相同整數之間的整數個數之和與總的數字個數之間的關系可證.【小問1詳解】當時,集合的子集個數為【小問2詳解】易知,又,所以,即,得,或,所以或1)若,則滿足條件的集合對共有,2)若,同理,滿足條件集合對共有2433)當A=B時,滿足條件的集合對共有所以,滿足條件集合對共243+243-32=454個.【小問3詳解】記,則1,1,2,2,··,,共2n個正整數,將這2n個正整數按照要求排列時,需在1和1中間放入1個數,在2和2中間放入2個數,…,在n和n中間放入n個數,共放入了個數,由于排列完成后共有2n個數,且1,1,2,2,··,,剛好放完,所以放入數字個數必為偶數,即Z,所以,Z,所以是4的倍數18、(1);(2).【解析】(1)由拋物線的定義,結合已知有求p,寫出拋物線方程.(2)由題意設直線l為,聯立拋物線方程,應用韋達定理可得,由中點公式有,進而求k值,寫出直線方程.【詳解】(1)由題意知:拋物線的準線為,則,可得,∴C的方程為.(2)由(1)知:,由題意知:直線l的斜率存在,令其方程為,∴聯立拋物線方程,得:,,若,則,而線段AB中點的縱坐標為-1,∴,即,得,∴直線l的方程為.【點睛】關鍵點點睛:(1)利用拋物線定義求參數,寫出拋物線方程;(2)由直線與拋物線相交,以及相交弦的中點坐標值,應用韋達定理、中點公式求直線斜率,并寫出直線方程.19、(1);(2).【解析】(1)由題設可得且,求出,即可得橢圓方程.(2)聯立直線l和橢圓C并整理為關于x的一元二次方程,由求出m的范圍,再應用韋達定理、弦長公式求,進而可得線段AB的中垂線,同理聯立曲線C求相交弦長,再由已知條件求m值,注意其范圍.【小問1詳解】由題意知,,則,令,可得,由題設有,則,所以C的方程為【小問2詳解】聯立方程得:,由,得設,,則,,所以,另一方面,,即線段AB的中點為,所以線段AB的中垂線方程為令,聯立方程得:同理求法,可得:,即因此,解得,故20、(1),證明見解析;(2)或.【解析】(1)根據題意可設直線的方程為,將點的坐標代入直線的方程,可求得的值,再將直線、的方程聯立,可得出這兩條直線的交點的坐標,將圓心的坐標代入直線的方程可證得結論成立;(2)利用勾股定理可求得圓心到直線的距離,對直線的斜率是否存在進行分類討論,設出直線方程,利用點到直線的距離公式求出參數的值,即可得出直線的方程.【小問1詳解】解:當直線與定直線垂直時,可設直線的方程為,將點的坐標代入直線的方程可得,則,此時,直線的方程為,聯立可得,即點,圓心的坐標為,因為,故直線過圓心.【小問2詳解】解:設圓心到直線的距離為,則.當直線的斜率不存在時,直線的方程為,此時圓心到直線的距離為,合乎題意;當直線的斜率存在時,可設直線的方程為,即,由題意可得,解得,此時直線的方程為,即.綜上所述,直

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論