




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
陜西省咸陽彩虹中學2023年數學高二上期末學業水平測試試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知橢圓經過點,當該橢圓的四個頂點構成的四邊形的周長最小時,其標準方程為()A. B.C. D.2.過點且與原點距離最大的直線方程是()A. B.C. D.3.已知命題,,則p的否定是()A. B.C. D.4.如圖,空間四邊形OABC中,,,,點M在上,且,點N為BC中點,則()A. B.C. D.5.已知,則點關于平面的對稱點的坐標是()A. B.C. D.6.已知雙曲線的離心率為,則的漸近線方程為A. B.C. D.7.在等差數列中,已知,則數列的前6項之和為()A.12 B.32C.36 D.378.從0,1,2,3,4,5這六個數字中,任取兩個不同數字構成平面直角坐標系內點的橫、縱坐標,其中不在軸上的點有()A.36個 B.30個C.25個 D.20個9.已知兩直線方程分別為l1:x+y=1,l2:ax+2y=0,若l1⊥l2,則a=()A2 B.-2C. D.10.已知數列,,則下列說法正確的是()A.此數列沒有最大項 B.此數列的最大項是C.此數列沒有最小項 D.此數列的最小項是11.若過點(2,1)的圓與兩坐標軸都相切,則圓心到直線的距離為()A. B.C. D.12.在長方體中,,,分別是棱,的中點,則異面直線,的夾角為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若正實數滿足,則的最大值是________14.命題的否定是____________________.15.設是定義在上的可導函數,且滿足,則不等式解集為_______16.正方體的棱長為2,點為底面正方形的中心,點在側面正方形的邊界及其內部運動,若,則點的軌跡的長度為______三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在四棱錐中,平面,底面是直角梯形,,,,,為側棱包含端點上的動點.(1)當時,求證平面;(2)當直線與平面所成角的正弦值為時,求二面角的余弦值.18.(12分)如圖,在△ABC中,內角A、B、C的對邊分別為a、b、c.已知b=3,c=6,,且AD為BC邊上的中線,AE為∠BAC的角平分線(1)求及線段BC的長;(2)求△ADE的面積19.(12分)如圖所示,在四棱錐中,平面,底面是等腰梯形,.且(1)證明:平面平面;(2)若,求平面與平面的夾角的余弦值20.(12分)已知拋物線:上的點到其準線的距離為5.(1)求拋物線的方程;(2)已知為原點,點在拋物線上,若的面積為6,求點的坐標.21.(12分)如圖,在四棱錐P-ABCD中,底面四邊形ABCD為直角梯形,,,,O為BD的中點,,(1)證明:平面ABCD;(2)求平面PAD與平面PBC所成銳二面角的余弦值22.(10分)在矩形中,是的中點,是上,,且,如圖,將沿折起至:(1)指出二面角的平面角,并說明理由;(2)若,求證:平面平面;(3)若是線段的中點,求證:直線平面;
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】把點代入橢圓方程得,寫出橢圓頂點坐標,計算四邊形周長討論它取最小值時的條件即得解.【詳解】依題意得,橢圓的四個頂點為,順次連接這四個點所得四邊形為菱形,其周長為,,當且僅當,即時取“=”,由得a2=12,b2=4,所求標準方程為.故選:A【點睛】給定兩個正數和(兩個正數倒數和)為定值,求這兩個正數倒數和(兩個正數和)的最值問題,可借助基本不等式中“1”的妙用解答.2、A【解析】過點且與原點O距離最遠的直線垂直于直線,再由點斜式求解即可【詳解】過點且與原點O距離最遠的直垂直于直線,,∴過點且與原點O距離最遠的直線的斜率為,∴過點且與原點O距離最遠的直線方程為:,即.故選:A3、A【解析】直接根據全稱命題的否定寫出結論.【詳解】命題,為全稱命題,故p的否定是:.故選:A【點睛】全稱量詞命題的否定是特稱(存在)量詞命題,特稱(存在)量詞命題的否定是全稱量詞命題4、B【解析】利用空間向量運算求得正確答案.【詳解】.故選:B5、C【解析】根據對稱性求得坐標即可.【詳解】點關于平面的對稱點的坐標是,故選:C6、C【解析】,故,即,故漸近線方程為.【考點】本題考查雙曲線的基本性質,考查學生的化歸與轉化能力.7、C【解析】直接按照等差數列項數性質求解即可.【詳解】數列的前6項之和為.故選:C.8、C【解析】根據點不在y軸上,分2類根據分類加法計數原理求解.【詳解】因為點不在軸上,所以點的橫坐標不能為0,分兩類考慮,第一類含0且為點的縱坐標,共有個點,第二類坐標不含0的點,共有個點,根據分類加法計數原理可得共有個點.故選:C9、B【解析】直接利用直線垂直公式計算得到答案.【詳解】因為l1⊥l2,所以k1k2=-1,即-=1,解得a=-2.故選:【點睛】本題考查了根據直線垂直計算參數,屬于簡單題.10、B【解析】令,則,,然后利用函數的知識可得答案.【詳解】令,則,當時,當時,,由雙勾函數的知識可得在上單調遞增,在上單調遞減所以當即時,取得最大值,所以此數列的最大項是,最小項為故選:B11、B【解析】由題意可知圓心在第一象限,設圓心的坐標為,可得圓的半徑為,寫出圓的標準方程,利用點在圓上,求得實數的值,利用點到直線的距離公式可求出圓心到直線的距離.【詳解】由于圓上的點在第一象限,若圓心不在第一象限,則圓與至少與一條坐標軸相交,不合乎題意,所以圓心必在第一象限,設圓心的坐標為,則圓的半徑為,圓的標準方程為.由題意可得,可得,解得或,所以圓心的坐標為或,圓心到直線的距離均為;圓心到直線的距離均為圓心到直線的距離均為;所以,圓心到直線的距離為.故選:B.【點睛】本題考查圓心到直線距離的計算,求出圓的方程是解題的關鍵,考查計算能力,屬于中等題.12、C【解析】設出長度,建立空間直角坐標系,根據向量求異面直線所成角即可.【詳解】如下圖所示,以,,所在直線方向,,軸,建立空間直角坐標系,設,,,,,,所以,,設異面直線,的夾角為,所以,所以,即異面直線,的夾角為.故選:C.二、填空題:本題共4小題,每小題5分,共20分。13、4【解析】由基本不等式及正實數、滿足,可得的最大值.【詳解】由基本不等式,可得正實數、滿足,,可得,當且僅當時等號成立,故的最大值為,故答案為:4.14、##【解析】根據全稱量詞命題的否定的知識寫出正確答案.【詳解】全稱量詞命題的否定是存在量詞命題,要注意否定結論,所以命題否定是:故答案為:15、【解析】構造函數,結合題意求得,由此判斷出在上遞增,由此求解出不等式的解集.【詳解】令,,故函數在上單調遞增,不等式可化為,則,解得:【點睛】本小題主要考查構造函數法解不等式,考查化歸與轉化的數學思想方法,屬于基礎題.16、【解析】取中點,利用線面垂直的判定方法可證得平面,由此可確定點軌跡為,再計算即可.【詳解】取中點,連接,平面,平面,,又四邊形為正方形,,又,平面,平面,又平面,;由題意得:,,,,;平面,,平面,,在側面的邊界及其內部運動,點軌跡為線段;故答案為:.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2).【解析】(1)連接交于,連接,證得,從而證得平面;(2)過作于,以為原點,建立空間直角坐標系,設,求面的法向量,由直線與平面所成角的正弦值為,求得的值,再用向量法求出二面角的余弦值.【詳解】解:(1)連接交于,連接,由題意,∵,∴,∴,又面,面,∴面.(2)過作于,則在中,,,,以為原點,建立如圖所示的空間直角坐標系.設,則,,,,,,,,設向量為平面的一個法向量,則由,有,令,得;記直線與平面所成的角為,則,解得,此時;設向量為平面的一個法向量則由,有,令,得;∴二面角的余弦值為.【點睛】本題考查了線面平行的判定與證明,用向量法求線面角,二面角,還考查了學生的分析能力,空間想象能力,運算能力,屬于中檔題.18、(1),BC=6(2)【解析】(1)利用正弦定理、二倍角公式化簡已知條件,求得,結合余弦定理求得,也即.(2)求得三角形的面積,結合角平分線、中線的性質求得三角形的面積.小問1詳解】∵,∴,∴,∴由余弦定理得(負值舍去),即BC=6.【小問2詳解】∵,,∴,∴,∵AE平分∠BAC,,由正弦定理得:,其中,∴,∵AD為BC邊的中線,∴,∴.19、(1)證明見解析(2)【解析】(1)由線面垂直的判定定理可得平面,再由面面垂直的判定定理可得平面平面;(2)以為坐標原點,以,所在直線分別為,軸,以過點垂直于平面的直線為軸建立空間直角坐標系.求出平面的一個法向量、平面的法向量,由二面角的空間向量求法可得答案.【小問1詳解】因為四邊形是等腰梯形,,所以,所以,即因為平面,所以,又因為,所以平面,因為平面,所以平面平面【小問2詳解】以為坐標原點,以,所在直線分別為,軸,以過點垂直于平面的直線為軸建立如圖所示的空間直角坐標系設,則,所以,,,由(1)可知平面的一個法向量為設平面的法向量為,因為,,所以得令,則,,所以,則,所以平面與平面的夾角的余弦值為.20、(1)(2)或【解析】(1)結合拋物線的定義求得,由此求得拋物線的方程.(2)設,根據三角形的面積列方程,求得的值,進而求得點的坐標.【小問1詳解】由拋物線的方程可得其準線方程,依拋物線的性質得,解得.∴拋物線的方程為.【小問2詳解】將代入,得.所以,直線的方程為,即.設,則點到直線的距離,又,由題意得,解得或.∴點的坐標是或.21、(1)見解析(2)【解析】(1)連接,利用勾股定理證明,又可證明,根據線面垂直的判定定理證明即可;(2)建立合適的空間直角坐標系,求出所需點的坐標和向量的坐標,然后利用待定系數法求出平面和平面的法向量,由向量的夾角公式求解即可小問1詳解】證明:如圖,連接,在中,由,可得,因為,,所以,,因為,,,則,故,因為,,,平面,則平面;【小問2詳解】解:由(1)可知,,,兩兩垂直,以點為坐標原點,建立空間直角坐標系如圖所示,則,0,,,0,,,0,,,2,,,0,,所以,則,,,又,設平面的法向量為,則,令,則,,故,設平面的法向量為,因為,所以,令,則,,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年工業互聯網平臺光通信技術升級市場潛力與競爭格局報告
- 2025年新型商業綜合體開業對城市交通壓力評估報告
- 2025年生態系統服務功能評估在生態修復工程中的應用與挑戰報告
- 狀元貓培訓課件
- 5G商用深化推動下2025年邊緣計算在智慧城市智慧城市社區服務的應用前景分析報告
- 放心的上門清潔培訓課件
- 2025年中醫藥現代化國際市場拓展:匈牙利市場深度研究報告
- 校企合作模式下的數學教學改革效果評估
- 鄧州一模初三數學試卷
- 高三期末文科數學試卷
- Unit 2 Home Sweet Home 第6課時(Project Reading Plus) 2025-2026學年人教版英語八年級下冊
- 餐飲連鎖企業品牌授權與經營管理協議
- xx公司獎金管理制度
- 2025-2030年中國生物醫學材料行業市場深度分析及發展前景與投資研究報告
- 2025年小學語文一年級下冊無紙筆測試題(小學一年級游園樂考無紙化檢測)
- 2025至2030中國彈簧鋼行業產業運行態勢及投資規劃深度研究報告
- 2025年地理中考時政熱點復習課件
- 北京市2024年高招本科普通批錄取投檔線
- DB32-T 5088-2025 廢活性炭綜合利用污染控制技術規范
- 2024-2025學年人教版數學八年級下冊期末復習卷(含解析)
- 城市通信基站建設對周邊居民影響風險評估報告
評論
0/150
提交評論