




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
湖北省漢川市第二中學2023年高二數(shù)學第一學期期末聯(lián)考模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.一條光線從點射出,經(jīng)軸反射后與圓相切,則反射光線所在直線的斜率為()A.或 B.或C.或 D.或2.在數(shù)列中,,則()A.2 B.C. D.3.下列通項公式中,對應數(shù)列是遞增數(shù)列的是()A B.C. D.4.求點關(guān)于x軸的對稱點的坐標為()A. B.C. D.5.設、是橢圓:的左、右焦點,為直線上一點,是底角為的等腰三角形,則的離心率為A. B.C. D.6.過點與直線平行的直線的方程是()A. B.C. D.7.在空間中,“直線與沒有公共點”是“直線與異面”的()A.必要不充分條件 B.充要條件C.充分不必要條件 D.既不充分也不必要條件8.設等差數(shù)列前n項和是,若,則的通項公式可以是()A. B.C. D.9.如圖,某鐵路客運部門設計的從甲地到乙地旅客托運行李的費用c(元)與行李質(zhì)量w(kg)之間的流程圖.已知旅客小李和小張托運行李的質(zhì)量分別為30kg,60kg,且他們托運的行李各自計費,則這兩人托運行李的費用之和為()A.28元 B.33元C.38元 D.48元10.已知函數(shù),則()A.3 B.C. D.11.在三棱錐中,平面,,,,Q是邊上的一動點,且直線與平面所成角的最大值為,則三棱錐的外接球的表面積為()A. B.C. D.12.直線在軸上的截距為,在軸上的截距為,則有()A., B.,C., D.,二、填空題:本題共4小題,每小題5分,共20分。13.設,若,則S=________.14.已知為平面的一個法向量,為直線的方向向量.若,則__________.15.已知雙曲線:的右焦點為,過點向雙曲線的一條漸近線引垂線,垂足為,交另一條漸近線于,若,則雙曲線的漸近線方程為__________16.與直線平行,且距離為的直線方程為______三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,已知橢圓:經(jīng)過點,離心率(1)求橢圓的標準方程;(2)設是經(jīng)過右焦點的任一弦(不經(jīng)過點),直線與直線:相交于點,記,,的斜率分別為,,,求證:,,成等差數(shù)列18.(12分)根據(jù)下列條件求圓的方程:(1)圓心在點O(0,0),半徑r=3(2)圓心在點O(0,0),且經(jīng)過點M(3,4)19.(12分)在①直線l:是拋物線C的準線;②F是橢圓的一個焦點;③,對于C上的點A,的最小值為;在以上三個條件中任選一個,填到下面問題中的橫線處,并完成解答.已知拋物線C:的焦點為F,滿足_____(1)求拋物線C的標準方程;(2)是拋物線C上在第一象限內(nèi)的一點,直線:與C交于M,N兩點,若的面積為,求m的值20.(12分)已知集合,設(1)若p是q的充分不必要條件,求實數(shù)a的取值范圍;(2)若?q是?p的必要不充分條件,求實數(shù)a的取值范圍21.(12分)已知數(shù)列的各項均為正數(shù),,為自然對數(shù)的底數(shù)(1)求函數(shù)的單調(diào)區(qū)間,并比較與的大小;(2)計算,,,由此推測計算的公式,并給出證明;22.(10分)在等差數(shù)列中.,(1)求的通項公式:(2)記的前項和為,求滿足的的最大值
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】由光的反射原理知,反射光線的反向延長線必過點,設反射光線所在直線的斜率為,則反射光線所在直線方程為:,即:.又因為光線與圓相切,所以,,整理:,解得:,或,故選D考點:1、圓的標準方程;2、直線的方程;3、直線與圓的位置關(guān)系.2、D【解析】根據(jù)遞推關(guān)系,代入數(shù)據(jù),逐步計算,即可得答案.【詳解】由題意得,令,可得,令,可得,令,可得,令,可得.故選:D3、C【解析】根據(jù)數(shù)列單調(diào)性的定義逐項判斷即可.【詳解】對于A,B選項對應數(shù)列是遞減數(shù)列.對于C選項,,故數(shù)列是遞增數(shù)列.對于D選項,由于.所以數(shù)列不是遞增數(shù)列故選:C.4、D【解析】根據(jù)點關(guān)于坐標軸的對稱點特征,直接寫出即可.【詳解】A點關(guān)于x軸對稱點,橫坐標不變,縱坐標與豎坐標為原坐標的相反數(shù),故點的坐標為,故選:D5、C【解析】如下圖所示,是底角為的等腰三角形,則有所以,所以又因為,所以,,所以所以答案選C.考點:橢圓的簡單幾何性質(zhì).6、A【解析】根據(jù)題意利用點斜式寫出直線方程即可.【詳解】解:過點的直線與直線平行,,即.故選:A.7、A【解析】由于在空間中,若直線與沒有公共點,則直線與平行或異面,再根據(jù)充分、必要條件的概念判斷,即可得到結(jié)果.【詳解】在空間中,若直線與沒有公共點,則直線與平行或異面.故“直線與沒有公共點”是“直線與異面”的必要不充分條件.故選:A.8、D【解析】根據(jù)題意可得公差的范圍,再逐一分析各個選項即可得出答案.【詳解】解:設等差數(shù)列的公差為,由,得,所以,故AB錯誤;若,則,與題意矛盾,故C錯誤;若,則,符合題意.故選:D.9、D【解析】根據(jù)程序框圖分別計算小李和小張托運行李的費用,再求和得出答案.【詳解】由程序框圖可知,當時,元;當時,元,所以這兩人托運行李的費用之和為元.故選:D10、B【解析】由導數(shù)運算法則求出導發(fā)函數(shù),然后可得導數(shù)值【詳解】由題意,所以故選:B11、C【解析】由平面,直線與平面所成角的最大時,最小,也即最小,,由此可求得,從而得,得長,然后取外心,作,取H為的中點,使得,則易得,求出的長即為外接球半徑,從而可得面積【詳解】三棱錐中,平面,直線與平面所成角為,如圖所示;則,且的最大值是,,的最小值是,即A到的距離為,,,在中可得,又,,可得;取的外接圓圓心為,作,取H為的中點,使得,則易得,由,解得,,,,由勾股定理得,所以三棱錐的外接球的表面積是.【點睛】本題考查求球的表面積,解題關(guān)鍵是確定球的球心,三棱錐的外接球心在過各面外心且與此面垂直的直線上12、B【解析】將直線方程的一般形式化為截距式,由此可得其在x軸和y軸上的截距.【詳解】直線方程化成截距式為,所以,故選:B.二、填空題:本題共4小題,每小題5分,共20分。13、1007【解析】可證f(x)+f(1﹣x)=1,由倒序相加法可得所求為1007對的組合,即1007個1,可得答案【詳解】解:∵函數(shù)f(x),∴f(x)+f(1﹣x)1故可得S=f()+f()…+f()=1007×1=1007,故答案為:1007點睛】本題考查倒序相加法求和,推斷出f(x)+f(1﹣x)=1是解題的關(guān)鍵.14、##【解析】根據(jù)線面平行列方程,化簡求得的值.【詳解】由于,所以.故答案為:15、【解析】由題意得雙曲線的右焦點F(c,0),設一漸近線OM的方程為,則另一漸近線ON的方程為.設,∵,∴,∴,解得∴點M的坐標為,又,∴,整理得,∴雙曲線的漸近線方程為答案:點睛:(1)已知雙曲線的標準方程求雙曲線的漸近線方程時,只要令雙曲線的標準方程中“1”為“0”就得到兩漸近線方程,即方程就是雙曲線的兩條漸近線方程(2)求雙曲線的漸進線方程的關(guān)鍵是求出的關(guān)系,并根據(jù)焦點的位置確定出漸近線的形式,并進一步得到其方程16、或【解析】由題意,設所求直線方程為,根據(jù)兩平行直線間的距離公式即可求解.【詳解】解:由題意,設所求直線方程為,因為直線與直線的距離為,所以,解得或,所以所求直線方程為或,故答案為:或.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)證明見解析【解析】(1)由點在橢圓上得到,再由,得到,聯(lián)立方程組,求得的值,即可得到橢圓的標準方程;(2)由(1)得橢圓右焦點坐標,設直線的方程為,聯(lián)立方程組,求得,及,結(jié)合斜率公式得到,結(jié)合,求得,即可得到,,成等差數(shù)列【詳解】(1)由題意,點在橢圓上得,可得①又由,所以②由①②聯(lián)立且,可得,,,故橢圓的標準方程為(2)由(1)知,橢圓的方程為,可得橢圓右焦點坐標,顯然直線斜率存在,設的斜率為,則直線的方程為,聯(lián)立方程組,整理得,設,,則有,,由直線的方程為,令,可得,即,從而,,,又因為共線,則有,即有,所以,將,代入得,又由,所以,即,,成等差數(shù)列【點睛】直線與圓錐曲線的綜合問題的求解策略:對于直線與圓錐曲線的位置關(guān)系的綜合應用問題,通常聯(lián)立直線方程與圓錐曲線方程,應用一元二次方程根與系數(shù)的關(guān)系,以及弦長公式等進行求解,此類問題易錯點是復雜式子的變形能力不足,導致錯解,能較好的考查考生的邏輯思維能力、運算求解能力18、(1)x2+y2=9(2)x2+y2=25【解析】(1)直接根據(jù)圓心坐標和半徑,即可得到答案;(2)利用兩點間的距離公式,求出圓的半徑,即可得到答案;【小問1詳解】根據(jù)題意,圓心在點O(0,0),半徑r=3,則要求圓的方程為x2+y2=9;【小問2詳解】圓心在點O(0,0),且經(jīng)過點M(3,4),要求圓的半徑r==5,則要求圓的方程為x2+y2=25;19、(1)(2)或.【解析】(1)選條件①,由準線方程得參數(shù),從而得拋物線方程;選條件②,由橢圓的焦點坐標與拋物線焦點坐標相同求得得拋物線方程;選條件③,由F,A,B三點共線時,,再由兩點間距離公式求得得拋物線方程;(2)求出點坐標,由點到直線距離公式求得到直線的距離,設,,直線方程代入拋物線方程,判別式大于0保證相交,由韋達定理得,由弦長公式得弦長,再計算出三角形的面積后可解得【小問1詳解】選條件①:由準線方程為知,所以拋物線C的方程為選條件②:因為拋物線的焦點坐標為所以由已知得橢圓的一個焦點為.所以,又,所以,所以拋物線C的方程為選條件③:由題意可知得,當F,A,B三點共線時,,由兩點間距離公式,解得,所以拋物線C的方程為.【小問2詳解】把代入方程,可得,設,,聯(lián)立,消去y可得,由,解得,又知,,所以,由到直線的距離為,所以,即,解得或經(jīng)檢驗均滿足,所以m的值為或.20、(1)(2)【解析】(1)先解出集合A、B,然后根據(jù)p是q的充分不必要條件列出不等式組求解.(2)?q是?p的必要不充分條件可知q是p的充分不必要條件,然后求解.【小問1詳解】解:由題意得:,p是q的充分不必要條件,所以集合A是集合B的真子集∴,即,所以實數(shù)a的取值范圍.【小問2詳解】?q是?p的必要不充分條件p是q的必要不充分條件,即q是p的充分不必要條件集合B是集合A的真子集∴,故實數(shù)a的取值范圍為21、(1)的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為;(2)詳見解析【解析】(1)求出的定義域,利用導數(shù)求其最大值,得到,取即可得出答案.(2)由,變形求得,,,由此推測:然后用數(shù)學歸納法證明即可.【小問1詳解】的定義域為,當,即時,單調(diào)遞增;當,即時,單調(diào)遞減故的單調(diào)遞增區(qū)間
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 工業(yè)園區(qū)規(guī)劃與產(chǎn)業(yè)升級策略
- 工業(yè)排污控制與治理
- 工業(yè)旅游景區(qū)規(guī)劃與環(huán)境設計研究
- 工業(yè)機器人設計與維護指南
- 工業(yè)廢水處理工程驗收案例分享
- 工業(yè)機器人技術(shù)及其產(chǎn)業(yè)發(fā)展
- 工業(yè)機器人故障診斷與預防技術(shù)
- 工業(yè)設備故障排查與預防措施
- 工業(yè)涂裝生產(chǎn)線的發(fā)展趨勢與挑戰(zhàn)
- 工業(yè)設計在智能制造中的作用
- 《CP控制計劃》課件
- 《公路橋涵養(yǎng)護規(guī)范》(5120-2021)【可編輯】
- 人教版三年級語文上冊期末試卷及答案【完整】
- 基因工程(研究生課程班)
- 煤礦頂板事故預防及應急處置知識培訓課件(2022修改版)
- 20t╱h循環(huán)流化床鍋爐安裝工程施工方案
- 交通安全知識考試題庫100道(含答案)
- 職業(yè)與人生論文
- 昆明市用人單位人員就業(yè)(錄用)登記表
- 公司職業(yè)病危害防治責任制度
- 第十八章:爬行綱課件
評論
0/150
提交評論