廣東省江門市2024屆數學高二上期末質量檢測模擬試題含解析_第1頁
廣東省江門市2024屆數學高二上期末質量檢測模擬試題含解析_第2頁
廣東省江門市2024屆數學高二上期末質量檢測模擬試題含解析_第3頁
廣東省江門市2024屆數學高二上期末質量檢測模擬試題含解析_第4頁
廣東省江門市2024屆數學高二上期末質量檢測模擬試題含解析_第5頁
已閱讀5頁,還剩14頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

廣東省江門市2024屆數學高二上期末質量檢測模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若橢圓對稱軸是坐標軸,長軸長為,焦距為,則橢圓的方程()A. B.C.或 D.以上都不對2.已知角的終邊經過點,則,的值分別為A., B.,C., D.,3.青花瓷是中華陶瓷燒制工藝的珍品,也是中國瓷器的主流品種之一.如圖,是一青花瓷花瓶,其外形上下對稱,可看成是雙曲線的一部分繞其虛軸旋轉所形成的曲面.若該花瓶的瓶口直徑為瓶身最小直徑的2倍,花瓶恰好能放入與其等高的正方體包裝箱內,則雙曲線的離心率為()A. B.C. D.4.已知直線,兩個不同的平面,,則下列命題正確的是()A.若,,則 B.若,,則C.若,,則 D.若,,則5.設aR,則“a=1”是“直線l1:ax+2y-1=0與直線l2:x+(a+1)y+4=0平行”的A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件6.已知拋物線過點,點為平面直角坐標系平面內一點,若線段的垂直平分線過拋物線的焦點,則點與原點間的距離的最小值為()A. B.C. D.7.已知雙曲線的左、右焦點分別為,,過點作直線交雙曲線的右支于A,B兩點.若,則雙曲線的離心率為()A. B.C. D.8.點M在圓上,點N在直線上,則|MN|的最小值是()A. B.C. D.19.已知拋物線的焦點為F,過F作斜率為2的直線l與拋物線交于A,B兩點,若弦的中點到拋物線準線的距離為3,則拋物線的方程為()A. B.C. D.10.已知直四棱柱的棱長均為,則直線與側面所成角的正切值為()A. B.C. D.11.命題“,”的否定為()A., B.,C., D.,12.已知雙曲線:的右焦點為,過的直線(為常數)與雙曲線在第一象限交于點.若(為原點),則的離心率為()A. B.C. D.5二、填空題:本題共4小題,每小題5分,共20分。13.函數在處的切線方程為_________14.經過兩直線l1:x-2y+4=0和l2:x+y-2=0的交點P,且與直線l3:3x-4y+5=0垂直的直線l的方程為________15.根據拋物線的光學性質可知,從拋物線的焦點發出的光線經該拋物線反射后與對稱軸平行,一條平行于對稱軸的光線經該拋物線反射后會經過拋物線的焦點.如圖所示,從沿直線發出的光線經拋物線兩次反射后,回到光源接收器,則該光線經過的路程為___________.16.隨機抽取某社區名居民,調查他們某一天吃早餐所花的費用(單位:元),所獲數據的莖葉圖如圖所示,則這個數據的眾數是_________三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)設或,(1)若時,p是q的什么條件?(2)若p是q的必要不充分條件,求a的取值范圍18.(12分)已知圓經過點和,且圓心在直線上(1)求圓的標準方程;(2)直線過點,且與圓相切,求直線的方程;(3)設直線與圓相交于兩點,點為圓上的一動點,求的面積的最大值19.(12分)已知圓C:,圓C與x軸交于A,B兩點(1)求直線y=x被圓C所截得的弦長;(2)圓M過點A,B,且圓心在直線y=x+1上,求圓M的方程20.(12分)已知函數(1)當時,求的單調區間;(2)當時,證明:存在最大值,且恒成立.21.(12分)如圖所示,橢圓的左、右焦點分別為、,左、右頂點分別為、,為橢圓上一點,連接并延長交橢圓于點,已知橢圓的離心率為,△的周長為8(1)求橢圓的方程;(2)設點的坐標為①當,,成等差數列時,求點的坐標;②若直線、分別與直線交于點、,以為直徑的圓是否經過某定點?若經過定點,求出定點坐標;若不經過定點,請說明理由22.(10分)已知拋物線的焦點為,點為坐標原點,直線過定點(其中,)與拋物線相交于兩點(點位于第一象限.(1)當時,求證:;(2)如圖,連接并延長交拋物線于兩點,,設和的面積分別為和,則是否為定值?若是,求出其值;若不是,請說明理由.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】求得、、的值,由此可得出所求橢圓的方程.【詳解】由題意可得,解得,,由于橢圓的對稱軸是坐標軸,則該橢圓的方程為或.故選:C.2、C【解析】利用任意角的三角函數的定義:,,,代入計算即可得到答案【詳解】由于角的終邊經過點,則,,(為坐標原點),所以由任意角的三角函數的定義:,.故答案選C【點睛】本題考查任意角的三角函數的定義,解決此類問題的關鍵是掌握牢記三角函數定義并能夠熟練應用,屬于基礎題3、C【解析】由題意作出軸截面,最短直徑為2a,根據已知條件點(2a,2a)在雙曲線上,代入雙曲線的標準方程,結合a,b,c的關系可求得離心率e的值【詳解】由題意作出軸截面如圖:M點是雙曲線與截面正方形的交點之一,設雙曲線的方程為:最短瓶口直徑為A1A2=2a,則由已知可得M是雙曲線上的點,且M(2a,2a)故,整理得4a2=3b2=3(c2﹣a2),化簡后得,解得故選:C4、C【解析】對于A,可能在內,故可判斷A;對于B,可能相交,故可判斷B;對于C,根據線面垂直的判定定理,可判定C;對于D,和可能平行,或斜交或在內,故可判斷D.【詳解】對于A,除了外,還有可能在內,故可判斷A錯誤;對于B,,那么可能相交,故可判斷B錯誤;對于C,根據線面平行的性質定理可知,在內一定存在和平行的直線,那么該直線也垂直于,所以,故判定C正確;對于D,,,則和可能平行,或斜交或在內,故可判D.錯誤,故選:C.5、A【解析】運用兩直線平行的充要條件得出l1與l2平行時a的值,而后運用充分必要條件的知識來解決即可解:∵當a=1時,直線l1:x+2y﹣1=0與直線l2:x+2y+4=0,兩條直線的斜率都是﹣,截距不相等,得到兩條直線平行,故前者是后者的充分條件,∵當兩條直線平行時,得到,解得a=﹣2,a=1,∴后者不能推出前者,∴前者是后者的充分不必要條件故選A考點:必要條件、充分條件與充要條件的判斷;直線的一般式方程與直線的平行關系6、B【解析】將點的坐標代入拋物線的方程,求出的值,可求得拋物線的方程,求出的坐標,分析可知點的軌跡是以點為圓心,半徑為的圓,利用圓的幾何性質可求得點與原點間的距離的最小值.【詳解】將點的坐標代入拋物線的方程得,可得,故拋物線的方程為,易知點,由中垂線的性質可得,則點的軌跡是以點為圓心,半徑為的圓,故點的軌跡方程為,如下圖所示:由圖可知,當點、、三點共線且在線段上時,取最小值,且.故選:B.7、A【解析】根據給定條件結合雙曲線定義求出,,再借助余弦定理求出半焦距c即可計算作答.【詳解】因,令,,而雙曲線實半軸長,由雙曲線定義知,,而,于是可得,在等腰中,,令雙曲線半焦距為c,在中,由余弦定理得:,而,,,解得,所以雙曲線的離心率為.故選:A【點睛】方法點睛:求雙曲線的離心率的方法:(1)定義法:通過已知條件列出方程組,求得得值,根據離心率的定義求解離心率;(2)齊次式法:由已知條件得出關于的二元齊次方程,然后轉化為關于的一元二次方程求解;(3)特殊值法:通過取特殊值或特殊位置,求出離心率.8、C【解析】根據題意可知圓心,又由于線外一點到已知直線的垂線段最短,結合點到直線的距離公式,即可求出結果.【詳解】由題意可知,圓心,半徑為,所以圓心到的距離為,所以的最小值為.故選:C.9、B【解析】設出直線,并與拋物線聯立,得到,再根據拋物線的定義建立等式即可求解.【詳解】因為直線l的方程為,即,由消去y,得,設,則,又因為弦的中點到拋物線的準線的距離為3,所以,而,所以,故,解得,所以拋物線的方程為故選:B.10、D【解析】根據題意把直線與側面所成角的正切值轉化為在直角三角形中的正切值,即可求出答案.【詳解】由題意可知直四棱柱如下圖所示:取的中點設為點,連接,在直四棱柱中,面,面,,在四邊形中,,,故且.面,面,面,.故直線與側面所成角的正切值為.故選:D.11、A【解析】利用含有一個量詞的命題的否定的定義求解.【詳解】因為命題“,”是全稱量詞命題,所以其否定是存在量詞命題,即為,,故選:A12、D【解析】取雙曲線的左焦點,連接,計算可得,即.設,則,,解得:,利用勾股定理計算可得,即可得出結果.【詳解】取雙曲線的左焦點,連接,,則因為,所以,即.,.設,則,,解得:.,,..故選:D二、填空題:本題共4小題,每小題5分,共20分。13、【解析】求得函數的導數,得到且,結合直線的點斜式方程,即可求解.【詳解】由題意,函數,可得,則且,所以函數在處的切線方程為,即,即切線方程為.故答案為:.14、4x+3y-6=0【解析】直接求出兩直線l1:x﹣2y+4=0和l2:x+y﹣2=0的交點P的坐標,求出直線的斜率,然后求出所求直線方程【詳解】由方程組可得P(0,2)∵l⊥l3,∴kl=﹣,∴直線l的方程為y﹣2=﹣x,即4x+3y-6=0故答案為:4x+3y-6=015、12【解析】求出,利用拋物線上的點到焦點的距離等于到準線的距離可得答案.【詳解】由得,設,,由拋物線性質,與軸的交點即為拋物線的焦點,,,,所以,所以該光線經過的路程為12.故答案為:12.16、【解析】將個數據寫出來,可得出這組數據的眾數.【詳解】這個數據分別為、、、、、、、、、、、、、、,該組數據的眾數為.故答案為:.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)充要條件;(2).【解析】(1)根據解一元二次不等式的方法,結合充分性、必要性的定義進行求解判斷即可;(2)根據必要不充分條件的性質進行求解即可.【小問1詳解】因為,所以,解得或,顯然p是q的充要條件;【小問2詳解】,當時,該不等式的解集為全體實數集,顯然由,但不成立,因此p是q的充分不必要條件,不符合題意;當時,該不等式的解集為:,顯然當時,不一定成立,因此p不是q的必要不充分條件,當時,該不等式解集為:,要想p是q的必要不充分條件,只需,而,所以,因此a的取值范圍為:.18、(1)(2)或(3)【解析】(1)解法一,根據題意設圓的標準方程為,進而待定系數法求解即可;解法二:由題知圓心在線段的垂直平分線上,進而結合題意得圓的圓心與半徑,寫出方程;(2)分直線的斜率存在與不存在兩種情況討論求解即可;(3)由幾何法求弦長得,進而到直線距離的最大值為,再計算面積即可.【小問1詳解】解:解法一:設圓的標準方程為,由已知得,解得,所以圓的標準方程為;解法二:由圓經過點和,可知圓心在線段的垂直平分線上,將代入,得,即,半徑,所以圓的標準方程為;【小問2詳解】解:當直線的斜率存在時,設,即,由直線與圓相切,得,解得,此時,當直線的斜率不存在時,直線顯然與圓相切所以直線的方程為或;【小問3詳解】解:圓心到直線的距離,所以,則點到直線距離的最大值為,所以的面積的最大值19、(1);(2).【解析】(1)根據已知條件,結合垂徑定理,以及點到直線的距離公式,即可求解(2)根據已知圓的方程,令y=0,結合韋達定理,求出圓心的橫坐標,即可求出圓心,再結合勾股定理,即可求出半徑【小問1詳解】∵圓C:,∴,即圓心為(-1,1),半徑r=3,∵直線y=x,即x-y=0,∴圓心(-1,1)到直線x-y=0的距離d=,∴直線y=x被圓C所截得的弦長為=【小問2詳解】設A(x1,y1),B(x2,y2),∵圓C:,圓C與x軸交于A,B兩點,∴x2-2x-7=0,則,|x1-x2|==,∴圓心的橫坐標為x=,∵圓心在直線y=x+1上,∴圓心為(1,2),∴半徑r=,故圓M的方程為20、(1)的單增區間為,;單減區間為,,;(2)證明見解析.【解析】(1)先求出函數的定義域,求出,由,結合函數的定義域可得出函數的單調區間.(2)當時,定義域R,求出,從而得出單調區間,由當時,,當時,,以及極值點與2的大小關系可得出當時,函數有最大值,然后再證明即可.【詳解】解:(1)定義域,可得且且,,可得且3無0無0減無減增無增減所以,的單增區間為,;單減區間為,,.(2)當時,定義域R因為,當時,,當時,,所以的最大值在時取得;由,即,得由,得,或由,得所以在上單調遞減,在上單調遞增,在上單調遞減.當時,,且,由所以當時,函數有最大值.所以,因為,所以,設,則所以化為由,則,則,所以所以21、(1);(2)①或;②過定點、,理由見解析.【解析】(1)由焦點三角形的周長、離心率求橢圓參數,即可得橢圓方程.(2)①由(1)可得,結合橢圓的定義求,即可確定的坐標;②由題設,求直線、的方程,進而求、坐標,即可得為直徑的圓的方程,令求橫坐標,即可得定點.【小問1詳解】由題設,易知:,可得,則,∴橢圓.【小問2詳解】①由(1)知:,令,則,∴,解得,故,此時或②由(1),,,∴可令直線:,直線:,∴將代入直線可得:,,則圓心且半徑為,∴為直徑的圓為,當時

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論