




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
貴州省長順縣民族高級中學2024屆數學高二上期末預測試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知是直線的方向向量,為平面的法向量,若,則的值為()A. B.C.4 D.2.某四面體的三視圖如圖所示,該四面體的表面積為()A. B.C. D.3.甲、乙、丙、丁四位同學一起去找老師詢問成語競賽的成績.老師說:你們四人中有位優秀,位良好,我現在給甲看乙、丙的成績,給乙看丙的成績,給丁看甲的成績.看后甲對大家說:我還是不知道我的成績.根據以上信息,則()A.乙、丁可以知道自己的成績 B.乙、丁可以知道對方的成績C.乙可以知道四人的成績 D.丁可以知道四人的成績4.數列中,,,則()A.32 B.62C.63 D.645.已知向量,,若,則()A.1 B.C. D.26.已知,,,,則下列不等關系正確的是()A. B.C. D.7.已知橢圓與雙曲線有相同的焦點、,橢圓的離心率為,雙曲線的離心率為,點P為橢圓與雙曲線的交點,且,則當取最大值時的值為()A. B.C. D.8.已知直線l和兩個不同的平面,,,則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件9.已知橢圓C1:+y2=1(m>1)與雙曲線C2:–y2=1(n>0)的焦點重合,e1,e2分別為C1,C2的離心率,則A.m>n且e1e2>1 B.m>n且e1e2<1C.m<n且e1e2>1 D.m<n且e1e2<110.江西省重點中學協作體于2020年進行了一次校際數學競賽,共有100名同學參賽,經過評判,這100名參賽者的得分都在之間,其得分的頻率分布直方圖如圖,則下列結論錯誤的是()A.得分在之間的共有40人B.從這100名參賽者中隨機選取1人,其得分在的概率為0.5C.這100名參賽者得分的中位數為65D.可求得11.已知P是橢圓上的一點,是橢圓的兩個焦點且,則的面積是()A. B.2C. D.112.已知橢圓方程為,點在橢圓上,右焦點為F,過原點的直線與橢圓交于A,B兩點,若,則橢圓的方程為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.拋物線的準線方程是___________.14.,若2是與的等比中項,則的最小值為___________.15.若,若,則______16.已知函數,則曲線在處的切線方程為___________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知等比數列的公比,且,是的等差中項.數列的前n項和為,滿足,.(1)求和的通項公式;(2)設,求的前2n項和.18.(12分)如圖,四邊形是一塊邊長為4km正方形地域,地域內有一條河流,其經過的路線是以中點為頂點且開口向右的拋物線的一部分(河流寬度忽略不計),某公司準備投資一個大型矩形游樂場.(1)設,矩形游樂園的面積為,求與之間的函數關系;(2)試求游樂園面積的最大值.19.(12分)已知數列是等差數列,為其前n項和,,(1)求的通項公式;(2)若,求證:為等比數列20.(12分)已知橢圓的離心率為,右焦點為,斜率為1的直線與橢圓交于兩點,以為底邊作等腰三角形,頂點為.(1)求橢圓的方程;(2)求的面積.21.(12分)如圖所示,第九屆亞洲機器人錦標賽VEX中國選拔賽永州賽區中,主辦方設計了一個矩形坐標場地ABCD(包含邊界和內部,A為坐標原點),AD長為10米,在AB邊上距離A點4米的F處放置一只電子狗,在距離A點2米的E處放置一個機器人,機器人行走速度為v,電子狗行走速度為,若電子狗和機器人在場地內沿直線方向同時到達場地內某點M,那么電子狗將被機器人捕獲,點M叫成功點.(1)求在這個矩形場地內成功點M的軌跡方程;(2)P為矩形場地AD邊上的一動點,若存在兩個成功點到直線FP的距離為,且直線FP與點M的軌跡沒有公共點,求P點橫坐標的取值范圍.22.(10分)在平面直角坐標系中,已知點,,過點的動直線與過點的動直線的交點為P,,的斜率均存在且乘積為,設動點Р的軌跡為曲線C.(1)求曲線C的方程;(2)若點M在曲線C上,過點M且垂直于OM的直線交C于另一點N,點M關于原點O的對稱點為Q.直線NQ交x軸于點T,求的最大值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】由,可得,再計算即可求解.【詳解】由題意可知,所以,即.故選:A2、A【解析】根據三視圖可得如圖所示的幾何體(三棱錐),根據三視圖中的數據可計算該幾何體的表面積.【詳解】根據三視圖可得如圖所示的幾何體-正三棱錐,其側面為等腰直角三角形,底面等邊三角形,由三視圖可得該正三棱錐的側棱長為1,故其表面積為,故選:A.3、A【解析】分析可知乙、丙的成績中必有位優秀、位良好,結合題意進行推導,可得出結論.【詳解】由于個人中的成績中有位優秀,位良好,甲知道乙、丙的成績,還是不知道自己的成績,則乙、丙的成績必有位優秀、位良好,甲、丁的成績中必有位優秀、位良好,因為給乙看丙的成績,則乙必然知道自己的成績,丁知道甲的成績后,必然知道自己的成績.故選:A.4、C【解析】把化成,故可得為等比數列,從而得到的值.【詳解】數列中,,故,因為,故,故,所以,所以為等比數列,公比為,首項為.所以即,故,故選C.【點睛】給定數列的遞推關系,我們常需要對其做變形構建新數列(新數列的通項容易求得),常見的遞推關系和變形方法如下:(1),取倒數變形為;(2),變形為,也可以變形為;5、B【解析】由向量平行,先求出的值,再由模長公式求解模長.【詳解】由,則,即則,所以則故選:B6、C【解析】不等式性質相關的題型,可以通過舉反例的方式判斷正誤.【詳解】若、均為負數,因為,則,故A錯.若、,則,故B錯.由不等式的性質可知,因為,所以,故C對.若,因為,所以,故D錯.故選:C.7、D【解析】由橢圓的定義及雙曲線的定義結合余弦定理可得,,的關系,由此可得,再利用重要不等式求最值,并求此時的的值.【詳解】設為第一象限的交點,、,則、,解得、,在中,由余弦定理得:,∴,∴,∴,∴,∴,,即,當且僅當,即,時等號成立,此時故選:D8、D【解析】根據直線、平面的位置關系,應用定義法判斷兩個條件之間的充分、必要性.【詳解】當,時,直線l可與平行、相交,故不一定成立,即充分性不成立;當,時,直線l可在平面內,故不一定成立,即必要性不成立.故選:D.9、A【解析】詳解】試題分析:由題意知,即,由于m>1,n>0,可得m>n,又=,故.故選A【考點】橢圓的簡單幾何性質,雙曲線的簡單幾何性質【易錯點睛】計算橢圓的焦點時,要注意;計算雙曲線的焦點時,要注意.否則很容易出現錯誤10、C【解析】根據給定的頻率分布直方圖,結合直方圖的性質,逐項計算,即可求解.【詳解】由頻率分布直方圖,可得A中,得分在之間共有人,所以A正確;B中,從100名參賽者中隨機選取1人,其得分在中的概率為,所以B正確;D中,由頻率分布直方圖的性質,可得,解得,所以D正確.C中,前2個小矩形面積之和為0.4,前3個小矩形面積之和為0.7,所以中位數在[60,70],這100名參賽者得分的中位數為,所以C不正確;故選:C.11、A【解析】設,先求出m、n,再利用面積公式即可求解.【詳解】在中,設,則,解得:.因為,所以,所以的面積是.故選:A12、A【解析】根據橢圓的性質可得,則橢圓方程可求.【詳解】由點在橢圓上得,由橢圓的對稱性可得,則,故橢圓方程為.故選:A.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】先根據拋物線方程求出,進而求出準線方程.【詳解】拋物線為,則,解得:,準線方程為:.故答案為:14、3【解析】根據等比中項列方程,結合基本不等式求得的最小值.【詳解】由題可得,則,當且僅當時等號成立.故答案為:15、2【解析】首先利用二項展開式的通項公式,求,再利用賦值法求系數的和以及【詳解】展開式的通項為,令,則,即,故,令,得.又,所以故故答案為:16、【解析】求出函數的導函數,即可求出切線的斜率,再利用點斜式求出切線方程【詳解】解:∵,∴,又,∴曲線在點處的切線方程為,即.故答案為:.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1),()(2)【解析】(1)等差數列和等比數列的基本量的計算,根據條件列出方程,并解方程即可;(2)數列根據的奇偶分段表示,奇數項通過乘公比錯位相減法克求得前項和,偶數項則是通過裂項求和.【小問1詳解】由得,.又,,所以,即,解得或(舍去).所以(),當時,,當時,,經檢驗,時,適合上式,故().綜上可得:,【小問2詳解】由(1)可知,當n為奇數時,,當n為偶數時,,由題意,有①②①-②得:,則有:..故.18、(1)(2)【解析】(1)首先建立直角坐標系,求出拋物線的方程,利用,求出點的坐標,表示出的面積為即可;(2)利用導數求函數的最值即可.【小問1詳解】以為原點,所在直線為軸,垂直于的直線為軸建立直角坐標系,則,設拋物線的方程為,將點代入方程可得,解得,則拋物線方程為,由已知得,則點的縱坐標為,點的橫坐標為,則,【小問2詳解】,令,解得,當時,,所以函數在上單調遞增,當時,,所以函數在上單調遞減,因此函數時,有最大值,19、(1)(2)證明見解析【解析】(1)由已知條件列出關于的方程組,解方程組求出,從而可求出的通項公式,(2)由(1)可得,然后利用等比數列的定義證明即可【小問1詳解】設數列的公差為,則由,,得,解得,所以【小問2詳解】證明:由(1)得,所以,()所以數列是以9為公比,27為首項的等比數列20、(1)(2)【解析】(1)根據橢圓的簡單幾何性質知,又,寫出橢圓的方程;(2)先斜截式設出直線,聯立方程組,根據直線與圓錐曲線的位置關系,可得出中點為的坐標,再根據△為等腰三角形知,從而得的斜率為,求出,寫出:,并計算,再根據點到直線距離公式求高,即可計算出面積【詳解】(1)由已知得,,解得,又,所以橢圓的方程為(2)設直線的方程為,由得,①設、的坐標分別為,(),中點為,則,,因為是等腰△的底邊,所以所以的斜率為,解得,此時方程①為解得,,所以,,所以,此時,點到直線:距離,所以△的面積考點:1、橢圓的簡單幾何性質;2、直線和橢圓的位置關系;3、橢圓的標準方程;4、點到直線的距離.【思路點晴】本題主要考查的是橢圓的方程,橢圓的簡單幾何性質,直線與橢圓的位置關系,點到直線的距離,屬于難題.解決本類問題時,注意使用橢圓的幾何性質,求得橢圓的標準方程;求三角形的面積需要求出底和高,在求解過程中要充分利用三角形是等腰三角形,進而知道定點與弦中點的連線垂直,這是解決問題的關鍵21、(1)(2)【解析】(1)分別以為軸,建立平面直角坐標系,由題意,利用兩點間的距離公式可得答案.(2)由題意可得點的軌跡所在圓的圓心到直線的距離,點的軌跡與軸的交點到直線的距離,從而可得答案.【小問1詳解】分別以為軸,建立平面直角坐標系,則,設成功點,可得即,化簡得因為點需在矩形場地內,所以故所求軌跡方程為【小問2詳解】設,直線方程為直線FP與點M軌跡沒有公共點,則圓心到直線的距離大于依題意,動點需滿足兩個條件:點的軌跡所在圓的圓心到直線的距離即,解得②點的軌跡與軸的交點到
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 軟組織修復材料力學性能評價基礎知識點歸納
- 牦牛飼養的生物安全管理體系
- 大學人生軌跡
- 音樂的力量與影響
- 多元融合盤活農村閑置資源的背景意義及必要性
- 部門砥礪前行
- 推動教育創新之路
- 2025年修補漆項目規劃申請報告
- 2025合作合同范本合資企業合同模板
- 2025至2030年中國快速晶閘管模塊行業投資前景及策略咨詢報告
- 北京大學國際政治經濟學教學大綱
- 跨文化溝通的本質-PPT課件
- 合肥市建設工程消防設計審查、消防驗收、備案與抽查文書樣式
- 《電氣工程基礎》熊信銀-張步涵-華中科技大學習題答案全解
- 財政一體化業務系統
- 北美連續油管技術的新進展及發展趨勢李宗田
- 行政單位會計實習報告(共36頁)
- 110千伏變電站工程檢測試驗項目計劃
- 《鐵路貨物運價規則》
- YD_T 3956-2021 電信網和互聯網數據安全評估規范_(高清版)
- 小學三年級下冊音樂《春天舉行音樂會》人音版(簡譜2014秋)(18張)(1)ppt課件
評論
0/150
提交評論